首页> 外文期刊>Complexity >Numerical Modeling and Investigation on Aerodynamic Noise Characteristics of Pantographs in High-Speed Trains
【24h】

Numerical Modeling and Investigation on Aerodynamic Noise Characteristics of Pantographs in High-Speed Trains

机译:高速列车放电弓空气动力噪声特性的数值模拟与调查

获取原文
获取原文并翻译 | 示例
           

摘要

Pantographs are important devices on high-speed trains. When a train runs at a high speed, concave and convex parts of the train cause serious airflow disturbances and result in flow separation, eddy shedding, and breakdown. A strong fluctuation pressure field will be caused and transformed into aerodynamic noises. When high-speed trains reach 300 km/h, aerodynamic noises become the main noise source. Aerodynamic noises of pantographs occupy a large proportion in far-field aerodynamic noises of the whole train. Therefore, the problem of aerodynamic noises for pantographs is outstanding among many aerodynamics problems. This paper applies Detached Eddy Simulation (DES) to conducting numerical simulations of flow fields around pantographs of highspeed trains which run in the open air. Time-domain characteristics, frequency-domain characteristics, and unsteady flow fields of aerodynamic noises for pantographs are obtained. The acoustic boundary element method is used to study noise radiation characteristics of pantographs. Results indicate that eddies with different rotation directions and different scales are in regions such as pantograph heads, hinge joints, bottom frames, and insulators, while larger eddies are on pantograph heads and bottom frames. These eddies affect fluctuation pressures of pantographs to form aerodynamic noise sources. Slide plates, pantograph heads, balance rods, insulators, bottom frames, and push rods are the main aerodynamic noise source of pantographs. Radiated energies of pantographs are mainly in mid-frequency and high-frequency bands. In high-frequency bands, the far-field aerodynamic noise of pantographs is mainly contributed by the pantograph head. Single-frequency noises are in the far-field aerodynamic noise of pantographs, where main frequencies are 293 Hz, 586 Hz, 880 Hz, and 1173 Hz. The farther the observed point is from the noise source, the faster the sound pressure attenuation will be. When the distance of two adjacent observed points is increased by double, the attenuation amplitude of sound pressure levels for pantographs is around 6.6 dB.
机译:Pintograins是高速列车的重要装置。当火车以高速运行时,火车的凹凸部分导致严重的气流干扰,导致流动分离,涡流脱落和故障。将引起强烈的波动压力场并转化为空气动力学噪声。当高速列车达到300 km / h时,空气动力学噪音成为主要的噪声源。受电弓的空气动力学噪声在整个火车的远地空气动力学噪声中占据了很大比例。因此,在许多空气动力学问题中,受电弓的空气动力学噪声问题突出。本文将独立的涡流模拟(DES)应用于在露天中运行的高速列车围绕Pantograin的流场的数值模拟。获得了对受电弓的空气动力学噪声的时域特征,频域特性和非定常流动场。声学边界元方法用于研究PINTORALS的噪声辐射特性。结果表明,具有不同旋转方向和不同尺度的漩涡是在诸如Pantograph头,铰链接头,底部框架和绝缘体的区域中,而较大的漩涡位于映射弓顶头和底部框架上。这些eddies影响受电弓的波动压力形成空气动力学噪声源。滑板,电压仪头,平衡杆,绝缘体,底部框架和推杆是Pantograph的主要空气动力学噪声源。受电弓的辐射能量主要是中频和高频带。在高频带中,受电弓的远场气动噪声主要由受电弓头贡献。单频噪声位于受限仪的远场空气动力噪声,主要频率为293Hz,586Hz,880 Hz和1173 Hz。观察到的噪声源越远,声压衰减就越快。当两个相邻观察点的距离增加双倍时,受电弓的声压水平的衰减幅度约为6.6dB。

著录项

  • 来源
    《Complexity》 |2018年第2期|共12页
  • 作者

    Sun Xiaoqi; Xiao Han;

  • 作者单位

    Qingdao Univ Sch Math &

    Stat Qingdao Peoples R China;

    Ocean Univ China Sch Math Sci Qingdao Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大系统理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号