...
首页> 外文期刊>Canadian Journal of Plant Science >Establishment of an efficient alfalfa regeneration system via organogenesis and the co-expression of Arabidopsis SOS genes improves salt tolerance in transgenic alfalfa (Medicago sativa L.)
【24h】

Establishment of an efficient alfalfa regeneration system via organogenesis and the co-expression of Arabidopsis SOS genes improves salt tolerance in transgenic alfalfa (Medicago sativa L.)

机译:通过器官发生建立高效的苜蓿再生系统和拟南芥SOS基因的共表达改善了转基因苜蓿(Medicago Sativa L.)的耐盐性

获取原文
获取原文并翻译 | 示例
           

摘要

The Salt Overly Sensitive (SOS) signal transduction pathway is pivotal in Na+ efflux and facilitates ion transport and homeostasis for improved salt tolerance in plants. Ten alfalfa varieties were used as experimental materials and two alfalfa regeneration systems were established and optimized. Cotyledons and hypocotyls were initially used as explants to induce embryogenic callus via the indirect production of somatic embryos to establish a callus acceptor system. Cotyledonary nodes were used as explants to induce adventitious bud formation via direct organogenesis, thereby establishing an in vitro regeneration system that could be used for the genetic transformation. Agrobacterium-mediated transformation of the cotyledonary nodes of the alfalfa 'Golden Empress b' was used to generate 25 independent sources of transformed plants exhibiting herbicide tolerance. Four of the positive transgenic plants were randomly selected for southern blot analysis, and three hybridization signals with one or two copies were detected. Reverse transcription polymerase chain reaction showed that the Bialaphos resistance (Bar) and SOS1 genes were expressed in transgenic plants and that multiple exogenous salt-tolerant genes were integrated into the transgenic plant genome and expressed at the transcriptional level. The overexpression of Arabidopsis SOS genes in alfalfa conferred a high degree of salinity tolerance, enhanced plant growth, lowered the accumulation of Na+, increased the accumulation of K+ in the leaves, and altered physiological and biochemical parameters in response to salt stress.
机译:盐过敏(SOS)信号转导途径在Na + Efflux中枢转,促进离子转运和稳态,以改善植物的耐盐性。 10种苜蓿品种被用作实验材料,建立并优化了两种苜蓿再生系统。上述子植物和下胚轴最初用作通过间接产生体细胞胚胎诱导胚性愈伤组织以建立愈伤组织受体系统。子叶细胞节点用作通过直接器官发生诱导不定芽形成的外植体,从而建立可用于遗传转化的体外再生系统。农杆菌介导的Alfalfa'金皇后B'的子叶细胞的转化用于产生表现出除草剂耐受性的25种变异的转化植物来源。对于Southern印迹分析,随机选择四种阳性转基因植物,并检测具有一个或两个拷贝的三个杂交信号。逆转录聚合酶链反应显示,Bialaphos抗性(棒)和SOS1基因在转基因植物中表达,并且将多个外源性耐盐基因整合到转基因植物基因组中并在转录水平表达。苜蓿中拟南芥SOS基因的过度表达赋予了高度盐度耐受性,增强的植物生长,降低了Na +的积累,增加了叶片中K +的积累,并响应于盐胁迫改变了生理和生化参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号