首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Computational Studies of the Electronic Structures of Copper-Doped CdSe Nanocrystals: Oxidation States, Jahn-Teller Distortions, Vibronic Bandshapes, and Singlet-Triplet Splittings
【24h】

Computational Studies of the Electronic Structures of Copper-Doped CdSe Nanocrystals: Oxidation States, Jahn-Teller Distortions, Vibronic Bandshapes, and Singlet-Triplet Splittings

机译:掺杂铜的CdSe纳米晶体电子结构的计算研究:氧化态,Jahn-Teller畸变,电子束带形和单重态-三重分裂

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic structures of copper-doped CdSe nanocrystals (NCs) are investigated using time-dependent density functional theory. Comparison of the electronic structures of Cu+- and Cu2+-doped NCs indicates that only the Cu+-ground state is consistent with the experimental absorption and photoluminescence (PL) spectra of copper-doped NCs, Cu2+-doped NCs being characterized by low-energy charge-transfer and d-d excited states that quench visible PL. In the luminescent metal-to-conduction-band charge-transfer (MLCBCT) excited state of the Cu+-doped CdSe NCs, the photogenerated hole is calculated to be localized at the copper dopant. Strong electron-phonon coupling in this MLCBCT excited state causes substantial geometric distortion along totally symmetric and Jahn-Teller nuclear coordinates, with a correspondingly large excited-state nuclear reorganization energy. This excited-state nuclear reorganization causes the broad PL band shape and large PL Stokes shift observed experimentally. Singlet and triplet MLCBCT excited-state configurations are also examined computationally. The sign and strength of the computed magnetic exchange coupling between the conduction-band electron's spin and the copper-localized spin are both consistent with experimental results. These calculations yield fundamental insights into the electronic structures and photophysical properties of copper-doped semiconductor NCs relevant to their potential application as spectral conversion phosphors in lighting and solar technologies.
机译:使用随时间变化的密度泛函理论研究了掺杂铜的CdSe纳米晶体(NCs)的电子结构。 Cu +和Cu2 +掺杂NCs的电子结构比较表明,只有Cu +基态与铜掺杂NCs的实验吸收光谱和光致发光(PL)光谱一致,Cu2 +掺杂NCs的特征在于低能电荷-转移和dd激发态淬灭可见光PL。在掺杂Cu +的CdSe NCs的发光金属-导电带电荷转移(MLCBCT)激发态下,计算出的光生空穴位于铜掺杂剂中。在这种MLCBCT激发态中,强电子-声子耦合会沿完全对称的Jahn-Teller核坐标引起相当大的几何畸变,并具有相应大的激发态核重组能。这种激发态的核重组导致宽PL带形状和实验观察到的大PL斯托克斯位移。单线态和三线态MLCBCT激发态构型也需要进行计算。计算出的导带电子自旋与铜局部自旋之间的磁交换耦合的符号和强度均与实验结果一致。这些计算可得出对铜掺杂半导体NC的电子结构和光物理特性的基本见解,与它们在照明和太阳能技术中作为光谱转换磷光体的潜在应用有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号