首页> 外文期刊>Nano letters >Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites
【24h】

Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites

机译:基于N掺杂碳管/ Au纳米颗粒掺杂MnO2纳米复合材料的超快充放电固态薄膜超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for super-capacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanopartides of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.
机译:尽管碳质材料具有长循环稳定性和高功率密度,但其低能量密度极大地限制了其应用。相反,由于金属氧化物的高能量密度,它们是用于超级电容器的有希望的伪电容电极材料。然而,金属氧化物的差的电导率构成了主要挑战,该挑战极大地限制了它们的储能能力。在这里,通过在碳纤维织物上生长N掺杂碳管/ Au纳米颗粒掺杂MnO2(NCTs / ANPDM)纳米复合材料,设计出了一种用于高性能伪电容器的先进集成电极。 NCT的出色导电性和井井有条的隧道以及电极的Au纳米粒子导致低内阻,良好的离子接触,因此即使在高扫描速率下,也能提高纯MnO2在水电解质中的高比电容的氧化还原反应。基于NCTs / ANPDM的原型固态薄膜对称超级电容器(SSC)器件具有高能量密度(51 Wh / kg)和出色的循环性能(5000次循环后93%)。此外,由NCTs / ANPDM和Fe2O3纳米棒组装而成的非对称超级电容器(ASC)器件具有超快的充电/放电(10 V / s),这是两个电极均由金属制成的固态薄膜超级电容器的最佳记录之一。氧化物电活性材料。此外,其优异的充电/放电性能可与双电层型超级电容器媲美。 ASC设备还显示出卓越的循环性能(5000次循环后为97%)。 NCTs / ANPDM纳米材料具有巨大的潜力,可作为能量存储设备的电源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号