首页> 外文期刊>ACS applied materials & interfaces >Additively Manufactured Macroporous Titanium with Silver-Releasing Micro-/Nanoporous Surface for Multipurpose Infection Control and Bone Repair - A Proof of Concept
【24h】

Additively Manufactured Macroporous Titanium with Silver-Releasing Micro-/Nanoporous Surface for Multipurpose Infection Control and Bone Repair - A Proof of Concept

机译:增材制造的具有多孔镀银微孔/纳米孔表面的大孔钛合金,用于多功能感染控制和骨修复-概念验证

获取原文
获取原文并翻译 | 示例
           

摘要

Restoring large-scale bone defects, where osteogenesis is slow while infections lurk, with biomaterials represents a formidable challenge in orthopedic clinics. Here, we propose a scaffold-based multipurpose anti-infection and bone repairing strategy to meet such restorative needs. To do this, personalized multifunctional titanium meshes were produced through an advanced additive manufacturing process and dual "TiO2-poly(dopamine)/Ag (nano)" post modifications, yielding macroporous constructs with micro-anoporous walls and nanosilver bullets immobilized/embedded therein. Ultrahigh loading capacity and durable release of Ag+ were accomplished. The scaffolds were active against planktonic/adherent bacteria (Gram-negative and positive) for up to 12 weeks. Additionally, they not only defended themselves from biofilm colonization but also helped destroy existing biofilms, especially in combination with antibiotics. Further, the osteoblasts/bacteria coculture study displayed that the engineered surfaces aided MG-63 cells to combat bacterial invasion. Meanwhile, the scaffolds elicited generally acceptable biocompatibility (cell adhesion, proliferation, and viability) and hastened osteoblast differentiation and maturation (alkaline phosphatase production, matrix secretion, and calcification), by synergy of micro-anoscale topological cues and bioactive catecholamine chemistry. Although done ex vivo, these studies reveal that our three-in-one strategy (infection prophylaxis, infection fighting, and bone repair) has great potential to simultaneously prevent/combat infections and bridge defected bone. This work provides new thoughts to the use of enabling technologies to design biomaterials that resolve unmet clinical needs.
机译:用生物材料修复骨质生成缓慢而感染潜伏的大规模骨缺损,在整形外科诊所提出了巨大的挑战。在这里,我们提出了一种基于支架的多功能抗感染和骨修复策略,以满足此类修复需求。为此,通过先进的增材制造工艺和双重“ TiO2-poly(dopamine)/ Ag(nano)”后修饰生产出个性化的多功能钛网,从而得到具有微/纳米孔壁和固定/嵌入其中的纳米银子弹的大孔结构。实现了超高负载能力和Ag +的持久释放。支架对浮游/粘附细菌(革兰氏阴性和阳性细菌)具有长达12周的活性。此外,他们不仅捍卫了自己免受生物膜定殖的能力,而且还帮助破坏了现有的生物膜,尤其是与抗生素联合使用时。此外,成骨细胞/细菌共培养研究表明,经工程改造的表面有助于MG-63细胞抵抗细菌入侵。同时,通过微/纳米级拓扑学线索和生物活性儿茶酚胺化学的协同作用,支架引发了普遍可接受的生物相容性(细胞粘附,增殖和活力),并加速了成骨细胞的分化和成熟(碱性磷酸酶的产生,基质分泌和钙化)。尽管这些研究是离体的,但这些研究表明我们的三合一策略(预防感染,对抗感染和骨骼修复)具有巨大的潜力,可以同时预防/抵抗感染并桥接缺损的骨骼。这项工作为使用使能技术设计可解决未满足的临床需求的生物材料提供了新思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号