...
首页> 外文期刊>Computational Materials Science >First-principles-based phase diagrams and thermodynamic properties of TCP phases in Re-X systems (X = Ta, V, W)
【24h】

First-principles-based phase diagrams and thermodynamic properties of TCP phases in Re-X systems (X = Ta, V, W)

机译:Re-X系统中基于第一原理的相图和TCP相的热力学性质(X = Ta,V,W)

获取原文
获取原文并翻译 | 示例
           

摘要

The structural stability of topologically close-packed phases in binary transition metal alloys is investigated with a combination of first-principles calculations based on density-functional theory and the Bragg-Williams-Gorsky approximation for the description of the configurational entropy. For a variety of different (i) exchange-correlation functionals, (ii) pseudopotentials, and (iii) relaxation schemes, for the relevant phases in Re-X (X = Ta, V, W) binary systems, we compare the energy of formation at T = 0 K, as well as the phase diagrams and site occupancies at finite temperatures. We confirm previous findings that the configurational entropy plays a stabilising role for complex phases in these systems at elevated temperatures. Small differences in the calculated energy of formation for different exchange-correlation functionals, pseudopotentials and relaxation schemes are expected, but give rise to qualitatively different phase diagrams. We employ these differences in order to estimate the order of magnitude of the standard deviation necessary in the qualitatively-reliable calculation of phase diagrams and site occupancies. In an attempt to determine the accuracy that is required to assure a qualitatively correct prediction of phase diagrams, we modify our first-principles results numerically by random variations with the determined standard deviation as maximum amplitude. Taking the order of site occupancies and the set of stable phases as simple criteria for a qualitatively correct prediction, we find that the accuracy required for the energy of formation of the individual configurations in these systems is approximately 5 meV/atom (≈0.5 kJ/mol at).
机译:结合基于密度泛函理论的第一性原理计算和用于描述构型熵的Bragg-Williams-Gorsky近似,研究了二元过渡金属合金中拓扑紧密堆积相的结构稳定性。对于多种不同的(i)交换相关函数,(ii)伪势和(iii)弛豫方案,对于Re-X(X = Ta,V,W)二元系统中的相关相,我们比较了T = 0 K时的形成,以及在有限温度下的相图和位点占用。我们证实了先前的发现,在升高的温度下,组态熵对这些系统中的复杂相起着稳定作用。对于不同的交换相关函数,伪势和弛豫方案,在计算出的形成能中存在小的差异是可以预期的,但会引起质上不同的相图。我们利用这些差异来估计定性图和站点占用量的定性计算中所需的标准偏差的数量级。为了确定确定相图的定性正确预测所需的精度,我们通过随机变化以确定的标准偏差作为最大幅度在数值上修改我们的第一原理结果。将位置占用的顺序和稳定相的集合作为定性正确预测的简单标准,我们发现这些系统中单个构型的形成能量所需的精度约为5 meV /原子(≈0.5kJ /摩尔)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号