...
首页> 外文期刊>Water resources research >Toward Understanding Direct Absorption and Grain Size Feedbacks by Dust Radiative Forcing in Snow With Coupled Snow Physical and Radiative Transfer Modeling
【24h】

Toward Understanding Direct Absorption and Grain Size Feedbacks by Dust Radiative Forcing in Snow With Coupled Snow Physical and Radiative Transfer Modeling

机译:结合雪物理和辐射传递模型,通过雪中的粉尘辐射强迫来了解直接吸收和粒度反馈

获取原文
获取原文并翻译 | 示例
           

摘要

The darkening of the snow surface by light-absorbing particles impacts snow albedo directly by increasing absorption of shortwave radiation in the visible wavelengths. This indirectly enhances the rate of snow grain coarsening, which determines absorption in the near-infrared wavelengths. In combination, these processes reduce snow albedo over the full range of snow reflectance, accelerating melt, and impacting regional climate and hydrology. Accurate parameterizations of snow albedo should represent both the direct and indirect radiative impacts. Here dust-influenced snow cover evolution was simulated at Senator Beck Basin Study Area, San Juan Mountains, CO with a multilayer physically based snow process model. The model was modified to track dust stratigraphy, and coupled to a snow/aerosol radiative transfer model to inform reflected shortwave radiation based on snow properties, dust concentrations, and region-specific dust optical properties. This varies from previous efforts to constrain the magnitude of accelerated melt due to dust by directly and physically representing the processes that determine the radiative impacts. Model outputs, including effective grain size, dust stratigraphy, timing of dust emergence, and albedo, were validated with a near daily snow and light-absorbing particle physical and optical property data set, and were well simulated. Daily mean radiative forcing ranged from 2 to 109 W/m(2) and was 30 W/m(2) on average over the full simulation, advancing snowmelt by 30 days. A partitioning of direct and indirect radiative impacts shows that direct absorption by dust contributes similar to 80% of total radiative forcing, with grain coarsening accounting for similar to 20%.
机译:光吸收颗粒使雪表面变暗,通过增加可见光波长的短波辐射的吸收,直接影响雪反照率。这间接提高了雪粒粗化的速度,从而决定了近红外波长的吸收。这些过程相结合,在整个雪反射范围内减少了雪反照率,加速了融化并影响了区域气候和水文学。准确的雪反照率参数化应代表直接和间接的辐射影响。在这里,使用多层基于物理的积雪过程模型在科罗拉多州圣胡安山的贝克盆地参议员研究区模拟了受粉尘影响的积雪演变。对该模型进行了修改以跟踪尘埃地层,并与雪/气溶胶辐射传递模型耦合,以根据雪性质,尘埃浓度和特定于区域的尘埃光学性质通知反射的短波辐射。这与以前通过直接和物理方式表示确定辐射影响的过程来限制粉尘导致的加速熔体数量的努力有所不同。模型输出,包括有效晶粒尺寸,尘埃地层,出尘时间和反照率,已通过近日降雪和吸收光的粒子物理和光学特性数据集进行了验证,并得到了很好的模拟。在整个模拟过程中,日平均辐射强迫范围为2至109 W / m(2),平均为30 W / m(2),使融雪提前了30天。对直接和间接辐射影响的划分显示,灰尘直接吸收的贡献约占总辐射强迫的80%,而晶粒粗化约占20%。

著录项

  • 来源
    《Water resources research》 |2019年第8期|7362-7378|共17页
  • 作者单位

    Univ Utah Department Geog Salt Lake City UT 84112 USA;

    Univ Calif Los Angeles Joint Inst Reg Earth Syst Sci & Engn Los Angeles CA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号