...
首页> 外文期刊>Water resources research >Microgenetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale
【24h】

Microgenetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale

机译:微遗传算法和人工神经网络评估区域范围内浅层地下水农药浓度预测的最低数据要求

获取原文
获取原文并翻译 | 示例
           

摘要

Artificial neural networks (ANNs) have been extensively used for forecasting problems involving waler quantity and quality. In most cases, the geometry and model parameters of the ANN are set using a trial-and-error approach to achieve better network generalization ability, whereby the available data are divided arbitrarily into training, testing, and validation subsets. It has been shown that using the arbitrary sample selection method to assign samples into the training subset commonly results in the inclusion of samples from densely clustered regions and omission of samples from sparsely represented regions. This paper presents a systematic approach using the self-organizing map (SOM) clustering technique that identifies which samples and determines how many samples should be included in each of the three subsets required by ANN for optimum predictive performance efficiency. In addition, this paper presents the microgenetic algorithms (μGA) that optimize ANN's geometry and model parameters in terms of the correlation coefficient (R). In the sensitivity analysis, μGA model parameters are found to be least sensitive to the optimum R value, while ANN's predictive performance is significantly affected by (1) the poor selection of its geometry and model parameters and (2) the arbitrary selection of samples for the three subsets of data used. It is demonstrated that the μGA-ANN model using the SOM technique for data division outperforms the μGA-ANN model using arbitrary data division. For the training subset, the model using the SOM technique identifies samples that are representative of the region, requiring only 20% of the total samples, whereas the arbitrary sample selection method requires 50-90%. Because resampling on a regional scale is expensive and time consuming, substantial cost and time could be saved if resampling could be done only on the 20% representative drinking water wells.
机译:人工神经网络(ANN)已被广泛用于预测涉及waler数量和质量的问题。在大多数情况下,使用试错法设置ANN的几何形状和模型参数以实现更好的网络泛化能力,从而将可用数据任意分为训练,测试和验证子集。已经表明,使用任意样本选择方法将样本分配到训练子集中,通常会导致包含来自密集聚类区域的样本,并且会丢失来自稀疏表示区域的样本。本文提出了一种使用自组织图(SOM)聚类技术的系统方法,该方法可识别哪些样本并确定ANN所需的三个子集中的每个子集中应包含多少样本,以实现最佳的预测性能。此外,本文还提出了一种微遗传算法(μGA),可以根据相关系数(R)优化ANN的几何形状和模型参数。在灵敏度分析中,发现μGA模型参数对最佳R值最不敏感,而ANN的预测性能受到以下因素的显着影响:(1)几何和模型参数选择不当,以及(2)使用的三个数据子集。结果表明,使用SOM技术进行数据划分的μGA-ANN模型优于使用任意数据划分的μGA-ANN模型。对于训练子集,使用SOM技术的模型可识别代表该区域的样本,仅需要总样本的20%,而任意样本选择方法则需要50-90%。由于在区域范围内进行重采样既昂贵又费时,因此,如果仅在20%的代表性饮用水井上进行重采样,则可以节省大量的成本和时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号