...
首页> 外文期刊>Water resources research >Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: Evidence from carbon, helium, and chlorine
【24h】

Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: Evidence from carbon, helium, and chlorine

机译:哥斯达黎加雨林中的旧地下水和岩浆溶质的化学和同位素特征:来自碳,氦和氯的证据

获取原文
获取原文并翻译 | 示例
           

摘要

C, He, and Cl concentrations and isotopes in groundwater and surface water in a lowland Costa Rican rain forest are consistent with the mixing of two distinct groundwaters: (1) high-solute bedrock groundwater representing interbasin groundwater flow (IGF) into the rain forest and (2) low-solute local groundwater recharged in the lowlands. In bedrock groundwater, high δ~(13)C (-4.89‰), low ~(14)C (7.98 pM), high R/R_A for He (6.88), and low ~(36)Cl/Cl (17 × 10~(-15)) suggest that elevated tracer concentrations are derived from magmatic outgassing and/or weathering of volcanic rock beneath nearby Volcan Barva. In local groundwater, the magmatic signature is absent, and data suggest atmospheric sources for He and Cl and a biogenic soil gas CO_2 source for dissolved inorganic carbon. Dating of ~(14)C suggests that the age of bedrock groundwater is 2400-4000 years (most likely at the lower end of the range). Local groundwater has ~(14)C > 100 pM, indicating the presence of "bomb carbon" and thus ages less than ~55 years. Overall, data are consistent with a conceptual hydrologic model originally proposed on the basis of water budget and major ion data: (1) large variation in solute concentrations can be explained by mixing of the two distinct groundwaters, (2) bedrock groundwater is much older than local groundwater, (3) elevated solute concentrations in bedrock groundwater are derived from volcanic fluids and/or rock, and (4) local groundwater has not interacted with volcanic rock. Tracers with different capabilities converge on the same hydrologic interpretation. Also, transport of magmatic CO_2 into the lowland rain forest via IGF seems to be significant relative to other large ecosystem-level carbon fluxes.
机译:哥斯达黎加低地雨林中地下水和地表水中C,He和Cl的浓度和同位素与两种截然不同的地下水的混合相一致:(1)高溶质基岩地下水代表流向雨林的跨盆地地下水(IGF) (2)在低地补给的低溶质局部地下水。在基岩地下水中,δ〜(13)C(-4.89‰)高,〜(14)C低(7.98 pM),He的R / R_A高(6.88),〜(36)Cl / Cl低(17× 10〜(-15))表明示踪剂浓度升高是由于附近沃尔坎巴瓦火山岩的岩浆放气和/或风化作用引起的。在当地的地下水中,没有岩浆特征,数据表明,He和Cl的大气来源以及溶解的无机碳的生物成因土壤气CO_2来源。 〜(14)C的年代表明基岩地下水的年龄为2400-4000年(最有可能在该范围的下限)。当地地下水的〜(14)C> 100 pM,表明存在“炸弹碳”,因此年龄不到〜55年。总体而言,数据与最初基于水量预算和主要离子数据提出的概念性水文模型相符:(1)溶质浓度的巨大变化可以通过两种截然不同的地下水混合来解释,(2)基岩地下水的年代久远(3)基岩地下水中的溶质浓度升高是由火山岩流体和/或岩石引起的,(4)局部地下水未与火山岩相互作用。具有不同功能的示踪剂收敛于相同的水文解释。同样,岩浆CO_2通过IGF输送到低地雨林中相对于其他大型生态系统级碳通量而言也很重要。

著录项

  • 来源
    《Water resources research》 |2009年第8期|W08413.1-W08413.14|共14页
  • 作者单位

    Marine, Earth, and Atmospheric Sciences, North Carolina State University, 5135 Jordan Hall, Raleigh, NC 27695-8208, USA;

    Marine, Earth, and Atmospheric Sciences, North Carolina State University, 5135 Jordan Hall, Raleigh, NC 27695-8208, USA AMEC Geomatrix, 2101 Webster Street, 12th Floor, Oakland, CA 94612, USA;

    Department of Geology and Geophysics, University of Utah, 135 South 1460 East, Room 719, Salt Lake City, UT 84112-0111, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号