...
首页> 外文期刊>Water resources research >Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain
【24h】

Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain

机译:贝叶斯地统计设计:当地统计模型不确定时,任务驱动的最佳现场调查

获取原文
获取原文并翻译 | 示例
           

摘要

Geostatistical optimal design optimizes subsurface exploration for maximum information toward task-specific prediction goals. Until recently, most geostatistical design studies have assumed that the geostatistical description (i.e., the mean, trends, covariance models and their parameters) is given a priori. This contradicts, as emphasized by Rubin and Dagan (1987a), the fact that only few or even no data at all offer support for such assumptions prior to the bulk of exploration effort. We believe that geostatistical design should (1) avoid unjustified a priori assumptions on the geostatistical description, (2) instead reduce geostatistical model uncertainty as secondary design objective, (3) rate this secondary objective optimal for the overall prediction goal, and (4) be robust even under inaccurate geostatistical assumptions. Bayesian Geostatistical Design follows these guidelines by considering uncertain covariance model parameters. We transfer this concept from kriging-like applications to geostatistical inverse problems. We also deem it inappropriate to consider parametric uncertainty only within a single covariance model. The Matern family of covariance functions has an additional shape parameter. Controlling model shape by a parameter converts covariance model selection to parameter identification and resembles Bayesian model averaging over a continuous spectrum of covariance models. This is appealing since it generalizes Bayesian model averaging from a finite number to an infinite number of models. We illustrate how our approach fulfills the above four guidelines in a series of synthetic test cases. The underlying scenarios are to minimize the prediction variance of (1) contaminant concentration or (2) arrival time at an ecologically sensitive location by optimal placement of hydraulic head and log conductivity measurements. Results highlight how both the impact of geostatistical model uncertainty and the sampling network design vary according to the choice of objective function.
机译:地统计优化设计可优化地下勘探,以实现针对特定任务的预测目标的最大信息。直到最近,大多数地统计学设计研究都假设先验地统计学描述(即均值,趋势,协方差模型及其参数)。正如鲁宾和达根(Rubin and Dagan,1987a)所强调的那样,在进行大量勘探工作之前,只有极少的数据甚至根本没有数据为这种假设提供了支持。我们认为,地统计学设计应(1)避免对地统计学描述进行不合理的先验假设;(2)降低地统计学模型的不确定性作为次要设计目标;(3)将该次要目标评估为总体预测目标的最佳值;以及(4)即使在不正确​​的地统计学假设下也能保持稳健。贝叶斯地统计设计通过考虑不确定的协方差模型参数来遵循这些准则。我们将此概念从类似克里金法的应用程序转移到地统计反问题中。我们还认为仅在单个协方差模型中考虑参数不确定性是不合适的。 Matern协方差函数族还有一个附加的形状参数。通过参数控制模型形状会将协方差模型选择转换为参数识别,并且类似于在连续方差模型中对平均贝叶斯模型进行平均。这很吸引人,因为它可以将平均贝叶斯模型从有限数量的模型推广到无限数量的模型。我们在一系列综合测试案例中说明了我们的方法如何满足上述四个准则。基本方案是通过最佳放置水压头和测井电导率测量值来最小化(1)污染物浓度或(2)在生态敏感位置的到达时间的预测差异。结果突出了地统计模型不确定性的影响和抽样网络设计如何根据目标函数的选择而变化。

著录项

  • 来源
    《Water resources research》 |2010年第3期|p.W03535.1-W03535.17|共17页
  • 作者单位

    Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA Institute of Hydraulic Engineering, SimTech, University of Stuttgart, Stuttgart, Germany;

    Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA;

    Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号