...
首页> 外文期刊>Water resources research >A topography-based scaling algorithm for soil hydraulic parameters at hillslope scales: Field testing
【24h】

A topography-based scaling algorithm for soil hydraulic parameters at hillslope scales: Field testing

机译:基于地形的坡度土壤水力参数缩放算法:现场测试

获取原文
获取原文并翻译 | 示例
           

摘要

Soil hydraulic parameters were upscaled from a 30 m resolution to a 1 km resolution using a new aggregation scheme (described in the companion paper) where the scale parameter was based on the topography. When soil hydraulic parameter aggregation or upscaling schemes ignore the effect of topography, their application becomes limited at hillslope scales and beyond, where topography plays a dominant role in soil deposition and formation. Hence the new upscaling algorithm was tested at the hillslope scale (1 km) across two locations: (1) the Little Washita watershed in Oklahoma, and (2) the Walnut Creek watershed in Iowa. The watersheds were divided into pixels of 1 km resolution and the effective soil hydraulic parameters obtained for each pixel. Each pixel/domain was then simulated using the physically based HYDRUS-3-D modeling platform. In order to account for the surface (runoff/on) and subsurface fluxes between pixels, an algorithm to route infiltration-excess runoff onto downstream pixels at daily time steps and to update the soil moisture states of the downstream pixels was applied. Simulated soil moisture states were compared across scales, and the coarse scale values compared against the airborne soil moisture data products obtained during the hydrology experiment field campaign periods (SGP97 and SMEX02) for selected pixels with different topographic complexities, soil distributions, and land cover. Results from these comparisons show good correlations between simulated and observed soil moisture states across time, topographic variations, location, elevation, and land cover. Stream discharge comparisons made at two gauging stations in the Little Washita watershed also provide reasonably good results as to the suitability of the upscaling algorithm used. Based only on the topography of the domain, the new upscaling algorithm was able to provide coarse resolution values for soil hydraulic parameters which effectively captured the variations in soil moisture across the watershed domains.
机译:使用新的聚合方案(在随行论文中描述),将土壤水力参数从30 m分辨率提升到1 km分辨率,其中比例参数基于地形。当土壤水力参数聚集或放大方案忽略地形的影响时,它们的应用将受限于山坡规模及以上,而地形在土壤沉积和形成中起主要作用。因此,在两个位置的山坡规模(1公里)上测试了新的放大算法:(1)俄克拉荷马州的Little Washita分水岭,和(2)爱荷华州的核桃溪分水岭。将流域划分为1 km分辨率的像素,并为每个像素获得有效的土壤水力参数。然后,使用基于物理的HYDRUS-3-D建模平台对每个像素/域进行仿真。为了解决像素之间的表面(径流/上流)和地下通量,应用了一种算法,该算法在每天的时间步长将过多的入渗径流路由到下游像素上,并更新下游像素的土壤水分状态。针对不同地形复杂度,土壤分布和土地覆盖的选定像素,在各个尺度上比较了模拟的土壤湿度状态,并将粗尺度值与在水文实验野战期间(SGP97和SMEX02)获得的空气传播的土壤湿度数据产品进行了比较。这些比较的结果表明,模拟和观察到的土壤湿度状态随时间,地形变化,位置,海拔和土地覆盖率之间具有良好的相关性。在Little Washita流域的两个计量站进行的流量排放比较也就所使用的放大算法的适用性提供了相当不错的结果。仅基于域的地形,新的放大算法能够为土壤水力参数提供粗略的分辨率值,从而有效地捕获了流域域中土壤水分的变化。

著录项

  • 来源
    《Water resources research》 |2012年第2期|p.W02519.1-W02519.16|共16页
  • 作者单位

    Department of Biological and Agricultural Engineering, Texas A&M University, 142 Scoates Hall, MS 2117,College Station, TX 77843-2117, USA;

    Department of Biological and Agricultural Engineering, Texas A&M University, 142 Scoates Hall, MS 2117,College Station, TX 77843-2117, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号