...
首页> 外文期刊>Water resources research >Aquifer-scale flow equations as generalized linear reservoir models for strip and circular aquifers: Links between the Darcian and the aquifer scale
【24h】

Aquifer-scale flow equations as generalized linear reservoir models for strip and circular aquifers: Links between the Darcian and the aquifer scale

机译:带状和圆形含水层的广义尺度线性储层模型-含水层尺度流动方程:达西式和含水层尺度之间的联系

获取原文
获取原文并翻译 | 示例
           

摘要

An analytical treatment of aquifer flow is presented to establish a link between runoff models and aquifer properties. Recently developed one-dimensional analytical solutions for transient flows in homogeneous aquifers produce expressions for the flux between the aquifer and the surface water, and the difference between the average hydraulic head in the aquifer and the surface water. It is shown that the ratio between these large-scale variables (i.e., the aquifer-scale hydraulic conductivity) can assume one of three asymptotic values. A non-Darcian aquifer-scale flow equation is derived for the average head in the aquifer minus the surface water level. This first-order ordinary differential equation has nonconstant coefficients based in part on the aquifer-scale conductivity. The aquifer-scale equation is a generalization of linear reservoir models: when the aquifer-scale conductivity is stationary, its solution has an exponential term (like a linear reservoir) with a reservoir coefficient that depends on external factors, and a constant term. The solution applies to a wider range of problems than conventional linear reservoir models. The aquifer's characteristic time (derived from the solution) shows that dense drainage networks can make aquifers behave like linear reservoirs most of the time, while large systems never will. When the asymptotic values are used before the time period for which they become valid (i.e., shortly after a perturbation in the surface water level or recharge/extraction), the predicted fluxes can be very inaccurate, and possibly have the wrong sign. In such cases, the full analytical solutions should be used.
机译:提出了对含水层流量的分析处理,以建立径流模型与含水层特性之间的联系。最近开发的用于在均质含水层中进行瞬态流动的一维解析解决方案可以表达含水层和地表水之间的通量,以及含水层中的平均水头与地面水之间的差异。结果表明,这些大尺度变量之间的比率(即含水层尺度的水力传导率)可以假定为三个渐近值之一。对于含水层中的平均水头减去地表水位,得出了一个非达西含水层规模的流量方程。该一阶常微分方程部分基于含水层电导率而具有非恒定系数。含水层比例方程是线性储层模型的一般化:当含水层比例电导率固定时,其解具有一个指数项(如线性储层),其储层系数取决于外部因素,并且是一个常数项。与常规线性油藏模型相比,该解决方案适用于更广泛的问题。含水层的特征时间(从解中得出)表明,密集的排水网络可以使含水层大部分时间表现得像线性储层,而大型系统则绝不会。当渐近值在它们变为有效的时间段之前使用时(即在地表水位扰动或补给/提取之后不久),预测的通量可能非常不准确,并且可能具有错误的符号。在这种情况下,应使用完整的分析解决方案。

著录项

  • 来源
    《Water resources research》 |2013年第12期|8605-8615|共11页
  • 作者

    Gerrit H. de Rooij;

  • 作者单位

    Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, DE-06120 Halle (Saale), Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号