...
首页> 外文期刊>Water resources research >Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra
【24h】

Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra

机译:从特征弛豫时间和复电导率谱的本征形成因子预测渗透率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including the mean relaxation time obtained from a Debye decomposition of the spectra and the Cole-Cole time constant.
机译:硅质材料的低频正交电导率谱通常表现出特征弛豫时间,该特征驰豫时间对应于相的峰值频率或正交电导率或典型转折频率,在该频率下,正交电导率开始迅速朝着较低频率降低。可以将该特征弛豫时间与(本征)形成因子和扩散系数结合起来,以预测饱和时多孔材料流动的渗透性。本征形成因数既可以使用电导率模型在几个盐度下确定,也可以使用表面电导率和正交电导率之间的关系确定在一个盐度下。进入渗透率,特征弛豫时间和形成因子之间关系的扩散系数对于等温条件仅采用两个不同的值。对于纯二氧化硅,阳离子(如钠或钾)在斯特恩层中的扩散系数等于这些离子在大孔水中的扩散系数,表明这些凝聚物的吸收较弱。对于表面暴露于氧化铝(可能是铁)的黏土材料以及干净的沙子和砂岩,斯特恩层中阳离子的扩散系数似乎比相同阳离子在孔隙水中的扩散系数小350倍。这些值与用于确定低频和高频正交电导率的幅度和表面电导率的离子迁移率的值一致。用于测试模型的数据库总共包含202个样本。我们的分析表明,所提出模型的渗透率预测值通常与0.1 mD以上的测量值相差一个数量级。我们还讨论了在以前的工作中被视为特征弛豫时间的不同时间常数之间的关系,包括从光谱的德拜分解获得的平均弛豫时间和科尔-科尔时间常数。

著录项

  • 来源
    《Water resources research》 |2015年第8期|6672-6700|共29页
  • 作者单位

    Colorado Sch Mines, Dept Geophys, Green Ctr, Golden, CO 80401 USA|Univ Savoie Mont Blanc, Equipe Volcan, ISTerre, CNRS,UMR 5275, Le Bourget Du Lac, France;

    Univ Lancaster, Lancaster Environm Ctr, Lancaster, England;

    Univ Lancaster, Lancaster Environm Ctr, Lancaster, England;

    Colorado Sch Mines, Dept Geophys, Green Ctr, Golden, CO 80401 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号