...
首页> 外文期刊>Water resources research >Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests
【24h】

Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests

机译:用热作为示踪剂来理解裂缝介质中的传输过程:多尺度热推挽示踪剂测试的理论和现场评估

获取原文
获取原文并翻译 | 示例
           

摘要

The characterization and modeling of heat transfer in fractured media is particularly challenging as the existence of fractures at multiple scales induces highly localized flow patterns. From a theoretical and numerical analysis of heat transfer in simple conceptual models of fractured media, we show that flow channeling has a significant effect on the scaling of heat recovery in both space and time. The late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) proportional to t(-1.5) behavior expected for the classical parallel plate model and follow the scaling T(t) proportional to 1/t(log t)(2) for a simple channel modeled as a tube. This scaling, which differs significantly from known scalings in mobile-immobile systems, is of purely geometrical origin: late time heat transfer from the matrix to a channel corresponds dimensionally to a radial diffusion process, while heat transfer from the matrix to a plate may be considered as a one-dimensional process. This phenomenon is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. These findings are supported by the results of a field experimental campaign performed on the fractured rock site of Ploemeur. The scaling of heat recovery in time and space, measured from thermal breakthrough curves measured through a series of push-pull tests at different scales, shows a clear signature of flow channeling. The whole data set can thus be successfully represented by a multichannel model parametrized by the mean channel density and aperture. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal tests may be controlled by fracture geometry. In addition, this highlights the interest of thermal push-pull tests as a complement to solute tracers tests to infer fracture aperture and geometry.
机译:裂缝介质中传热的表征和建模特别具有挑战性,因为存在多个尺度的裂缝会引起高度局部化的流型。从对破裂介质的简单概念模型中的传热进行理论和数值分析,我们表明,流动通道对空间和时间上的热回收规模具有显着影响。通道流下热回收的后期拖尾表现出与经典平行板模型预期的t(-1.5)行为成比例的T(t)偏离,并遵循与1 / t(log)成比例的比例T(t) t)(2)用于建模为管的简单通道。这种缩放比例与移动固定系统中的已知缩放比例有很大不同,它纯粹是几何形状的起源:从基体到通道的较晚热传递在尺寸上对应于径向扩散过程,而从基体到板的热传递可能是径向扩散过程。被视为一维过程。这种现象还表现在热回收的空间尺度上,因为流动通道影响了热穿透峰幅度的衰减以及峰时间随尺度的增加。这些发现得到了在Ploemeur裂隙岩石现场进行的野外实验活动的结果的支持。根据通过一系列不同比例的一系列推挽试验测得的热穿透曲线测​​得的时间和空间热量回收比例,显示出明显的流动通道特征。因此,整个数据集可以成功地由以平均通道密度和孔径为参数的多通道模型来表示。这些发现为裂隙岩石中的流动通道对传热的影响带来了新的见解,显示了如何通过裂缝的几何形状来控制地热试验中的热量回收。此外,这突出了热推挽试验作为溶质示踪剂试验的补充以推断裂缝孔径和几何形状的兴趣。

著录项

  • 来源
    《Water resources research》 |2016年第7期|5442-5457|共16页
  • 作者单位

    Univ Rennes 1, OSUR, CNRS, Geosci Rennes,UMR 6118, Rennes, France|Swiss Fed Inst Technol, Inst Geol, Zurich, Switzerland;

    Univ Rennes 1, OSUR, CNRS, Geosci Rennes,UMR 6118, Rennes, France;

    Univ Rennes 1, OSUR, CNRS, Geosci Rennes,UMR 6118, Rennes, France;

    Spanish Natl Res Council IDAEA CSIC, Barcelona, Spain;

    Univ Rennes 1, OSUR, CNRS, Geosci Rennes,UMR 6118, Rennes, France|OSU, Biol & Ecol Engn, Corvallis, OR USA;

    Univ Rennes 1, OSUR, CNRS, Geosci Rennes,UMR 6118, Rennes, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号