首页> 外文期刊>Water resources research >Identification of contaminant source architecturesA statistical inversion that emulates multiphase physics in a computationally practicable manner
【24h】

Identification of contaminant source architecturesA statistical inversion that emulates multiphase physics in a computationally practicable manner

机译:识别污染源架构以统计上可行的方式模拟多相物理学的统计反演

获取原文
获取原文并翻译 | 示例
           

摘要

The goal of this work is to improve the inference of nonaqueous-phase contaminated source zone architectures (CSA) from field data. We follow the idea that a physically motivated model for CSA formation helps in this inference by providing relevant relationships between observables and the unknown CSA. Typical multiphase models are computationally too expensive to be applied for inverse modeling; thus, state-of-the-art CSA identification techniques do not yet use physically based CSA formation models. To overcome this shortcoming, we apply a stochastic multiphase model with reduced computational effort that can be used to generate a large ensemble of possible CSA realizations. Further, we apply a reverse transport formulation in order to accelerate the inversion of transport-related data such as downgradient aqueous-phase concentrations. We combine these approaches within an inverse Bayesian methodology for joint inversion of CSA and aquifer parameters. Because we use multiphase physics to constrain and inform the inversion, (1) only physically meaningful CSAs are inferred; (2) each conditional realization is statistically meaningful; (3) we obtain physically meaningful spatial dependencies for interpolation and extrapolation of point-like observations between the different involved unknowns and observables, and (4) dependencies far beyond simple correlation; (5) the inversion yields meaningful uncertainty bounds. We illustrate our concept by inferring three-dimensional probability distributions of DNAPL residence, contaminant mass discharge, and of other CSA characteristics. In the inference example, we use synthetic numerical data on permeability, DNAPL saturation and downgradient aqueous-phase concentration, and we substantiate our claims about the advantages of emulating a multiphase flow model with reduced computational requirement in the inversion.
机译:这项工作的目的是要从现场数据中推断出非水相污染源区架构(CSA)。我们遵循这样的思想,即通过提供可观察到的和未知的CSA之间的相关关系,CSA形成的物理模型有助于这一推断。典型的多相模型在计算上过于昂贵,无法应用于逆向建模。因此,最新的CSA识别技术尚未使用基于物理的CSA形成模型。为了克服这个缺点,我们采用了一种随机多相模型,减少了计算量,可用于生成可能的CSA实现的大型集合。此外,我们应用反向运输公式来加速与运输相关的数据(例如水相浓度下降)的反演。我们将这些方法与贝叶斯逆方法相结合,以共同反演CSA和含水层参数。因为我们使用多相物理学来约束和告知反演,所以(1)仅推断出具有物理意义的CSA; (2)每个条件实现在统计上都是有意义的; (3)我们获得了物理上有意义的空间依存关系,用于在不同的未知量和可观测值之间进行点状观测的插值和外推;(4)远远超出了简单的相关性; (5)反演产生有意义的不确定性边界。我们通过推断DNAPL驻留,污染物大量排放以及其他CSA特征的三维概率分布来说明我们的概念。在推论示例中,我们使用了有关渗透率,DNAPL饱和度和下降的水相浓度的综合数值数据,并且证实了我们的观点,即在反演中模拟多相流模型的优点,减少了计算需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号