...
首页> 外文期刊>TsAGI science journal >DEVELOPMENT, VERIFICATION, AND VALIDATION OF THE METHODOLOGY FOR SONIC BOOM OVERPRESSURE AND LOUDNESS CALCULATION USING MODERN COMPUTATIONAL FLUID DYNAMICS METHODS
【24h】

DEVELOPMENT, VERIFICATION, AND VALIDATION OF THE METHODOLOGY FOR SONIC BOOM OVERPRESSURE AND LOUDNESS CALCULATION USING MODERN COMPUTATIONAL FLUID DYNAMICS METHODS

机译:使用现代计算流体动力学方法的Sonic Boom过压和响度计算方法的开发,验证和验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Along with achievements in relation to the high aerodynamic characteristics during the supersonic cruising mode one of the main problems of creating new generation supersonic transport aircraft is providing acceptable sonic boom levels. This requires the development of reliable methods for obtaining the near field under the plane by taking into account the influence of the boundary layer in order to calculate the overpressure on the ground and evaluate the loudness of the sonic boom. In this work, a methodology used at TsAGI to calculate the sonic boom overpressure was adapted in the ANSYS CFX software package to solve the Reynolds-averaged Navier-Stokes equations. A macro to calculate the overpressure on the ground for the distribution of disturbances in the near field under the aircraft and a code to evaluate the sonic boom loudness in various metrics were developed. Computational mesh verification of the results was carried out and the methodology was validated using American Institute of Aeronautics and Astronautics Sonic Boom Prediction Workshop materials. Four variants of the equivalent body of revolution of the minimum sonic boom using nose part sharpening variations were investigated. The obtained overpressure curves were compared with the theoretical data and calculation results using Euler equations. The effect of sharpening the nose part on the aerodynamic drag and sound boom characteristics is shown.
机译:随着超声波巡航模式期间的高空气动力学特性的成就,创造新一代超音速运输飞机的主要问题之一是提供可接受的声波呼吸水平。这需要开发通过考虑边界层的影响来在平面下获得近场的可靠方法,以便计算地面上的过压并评估声波悬臂的响度。在这项工作中,TSAGI用于计算Sonic Boom过压的方法在ANSYS CFX软件包中适用于解决reynolds平均的Navier-Stokes方程。开发了一种宏,用于计算飞机下近场近场紊乱的地面上的超压,并开发了评估各种指标中的声波轰隆度的代码。计算网格验证进行了结果,并使用美国航空航天研究所的Sonic Boom预测车间材料进行了验证方法。研究了使用鼻部部分锐化变化的最小声波吊杆的等效革命的四个变体。将获得的过压曲线与使用欧拉方程的理论数据和计算结果进行了比较。展示了锐化鼻部对空气动力学阻力和声音动力特性的影响。

著录项

  • 来源
    《TsAGI science journal》 |2020年第1期|15-28|共14页
  • 作者单位

    Central Aerohydrodynamic Institute (TsAGI) 1 Zhukovsky Str. Zhukovsky Moscow Region 140180 Russian Federation;

    Central Aerohydrodynamic Institute (TsAGI) 1 Zhukovsky Str. Zhukovsky Moscow Region 140180 Russian Federation;

    Central Aerohydrodynamic Institute (TsAGI) 1 Zhukovsky Str. Zhukovsky Moscow Region 140180 Russian Federation;

    Central Aerohydrodynamic Institute (TsAGI) 1 Zhukovsky Str. Zhukovsky Moscow Region 140180 Russian Federation;

    Central Aerohydrodynamic Institute (TsAGI) 1 Zhukovsky Str. Zhukovsky Moscow Region 140180 Russian Federation;

    Central Aerohydrodynamic Institute (TsAGI) 1 Zhukovsky Str. Zhukovsky Moscow Region 140180 Russian Federation;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    sonic boom; overpressure curve; near field; sonic boom loudness; computational modeling; Navier-Stokes equations; aerodynamic drag;

    机译:Sonic Boom;超压曲线;近场;Sonic Boom响度;计算建模;Navier-Stokes方程式;空气动力学阻力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号