...
首页> 外文期刊>Transportation Research Part B: Methodological >Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium
【24h】

Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium

机译:基于宏观的基本图考虑动态用户均衡的周边控制

获取原文
获取原文并翻译 | 示例
           

摘要

Macroscopic fundamental diagram (MFD) has been receiving increasing attention recently due to its potential to describe traffic dynamics and guide the design of traffic control schemes at the network level. Perimeter control and route guidance are two main MFD-based traffic control approaches. However, current MFD-based perimeter control seldom considers travelers' route choice behavior, while MFD-based route guidance studies usually assume directly that travelers would follow the guidance and neglect the effects of traffic control. This paper aims to integrate the MFD-based perimeter control (i.e., the behavior of a system manager) and the dynamic user equilibrium based route choice behavior (i.e., the behavior of travelers) into one rigorous mathematical framework. Given a traffic network that has been divided into multiple homogeneous regions, we use MFD to describe the dynamics of each region, and use point queue model to capture the dynamics of queues formed at the boundaries. Besides, we model travelers' route choice behavior by the instantaneous dynamic user equilibrium (IDUE) principle, and design an efficient range perimeter control method from the system perspective. We model the interactions between the system manager and the travelers as a non-zero sum, non-cooperative differential game, where the system manager aims to improve the system performance while travelers try to minimize their own travel times. Meanwhile, they share the common constraints (i.e., MFD dynamics and point queue dynamics at boundaries). Mathematically, this leads to a differential complementarity system (DCS). We propose a time-stepping approach to discretize and solve the DCS model, based on which the solution existence and convergence are also established. Numerical results show that the proposed method can limit the vehicle accumulations within the efficient range of each region, which helps improve the network performance. Compared with the condition without perimeter control, the proposed control method can improve network-wide traffic performance up to 14.18%. (C) 2020 Elsevier Ltd. All rights reserved.
机译:宏观基本图(MFD)最近一直在收到越来越多的关注,因为它可以描述交通动态和指导网络级别的交通控制方案设计。周边控制和路由指导是两种基于MFD的交通管制方法。然而,基于MFD的外围控制很少考虑旅行者的路线选择行为,而基于MFD的路由指导研究通常直接假设旅行者遵循指导并忽视交通管制的影响。本文旨在集成基于MFD的周边控制(即,系统管理器的行为)和动态用户均衡的路由选择行为(即,旅行者的行为)中的一个严格的数学框架。给定已被分成多个同类区域的流量网络,我们使用MFD来描述每个区域的动态,并使用点队列模型来捕获在边界处形成的队列的动态。此外,我们通过瞬时动态用户均衡(IDUE)原理模拟旅行者的路线选择行为,并从系统角度设计一个有效的范围限制控制方法。我们将系统管理器和旅行者之间的交互模型为非零和非合作差异游戏,其中系统管理器旨在提高系统性能,而旅行者试图最小化自己的旅行时间。同时,它们共享共同的约束(即边界的MFD动态和点队列动态)。在数学上,这导致差分互补系统(DCS)。我们提出了一种时间步进方法来离散和解决DCS模型,基于该DCS模型,基于该DCS模型也建立了解决方案存在和收敛性。数值结果表明,该方法可以在每个区域的有效范围内限制车辆累积,这有助于提高网络性能。与没有周长控制的情况相比,所提出的控制方法可以提高网络范围的交通性能,高达14.18%。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号