...
首页> 外文期刊>Transport in Porous Media >Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method
【24h】

Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method

机译:用格子Boltzmann方法模拟均质孔隙网络中驱气液的孔隙尺度模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A lattice Boltzmann high-density-ratio model, which uses diffuse interface theory to describe the interfacial dynamics and was proposed originally by Lee and Liu (J Comput Phys 229:8045-8063, 2010), is extended to simulate immiscible multiphase flows in porous media. A wetting boundary treatment is proposed for concave and convex corners. The capability and accuracy of this model is first validated by simulations of equilibrium contact angle, injection of a non-wetting gas into two parallel capillary tubes, and dynamic capillary intrusion. The model is then used to simulate gas displacement of liquid in a homogenous two-dimensional pore network consisting of uniformly spaced square obstructions. The influence of capillary number (Ca), viscosity ratio (M), surface wettability, and Bond number (Bo) is studied systematically. In the drainage displacement, we have identified three different regimes, namely stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number, viscosity ratio, and Bond number. Gas saturation generally increases with an increase in capillary number at breakthrough, whereas a slight decrease occurs when Ca is increased from 8.66 × 10~(-4) to 4.33 × 10~(-3), which is associated with the viscous instability at high Ca. Increasing the viscosity ratio can enhance stability during displacement, leading to an increase in gas saturation. In the two-dimensional phase diagram, our results show that the viscous fingering regime occupies a zone markedly different from those obtained in previous numerical and experimental studies. When the surface wettability is taken into account, the residual liquid blob decreases in size with the affinity of the displacing gas to the solid surface. Increasing Bo can increase the gas saturation, and stable displacement is observed for Bo > 1 because the applied gravity has a stabilizing influence on the drainage process.
机译:Lee和Liu最初(J Comput Phys 229:8045-8063,2010)提出了一种使用扩散界面理论描述界面动力学的格子Boltzmann高密度比模型,以模拟多孔中不混溶的多相流。媒体。提出了针对凹角和凸角的润湿边界处理。该模型的功能和准确性首先通过平衡接触角的仿真,向两个平行毛细管中注入非润湿性气体以及动态毛细管侵入来验证。然后,该模型用于模拟由均匀间隔的正方形障碍物构成的均匀二维孔隙网络中液体的气体驱替。系统地研究了毛细管数(Ca),粘度比(M),表面润湿性和键数(Bo)的影响。在排水位移中,我们确定了三种不同的模式,即稳定位移,毛细管指法和粘性指法,所有这些都强烈取决于毛细管数,粘度比和键数。气体饱和度通常随着击穿时毛细管数的增加而增加,而当Ca从8.66×10〜(-4)增加到4.33×10〜(-3)时,气体饱和度会略有降低,这与高温下的粘性不稳定性有关。钙增加粘度比可以提高置换过程中的稳定性,从而导致气体饱和度增加。在二维相图中,我们的结果表明,与以前的数值和实验研究相比,粘性指法占据的区域明显不同。当考虑表面润湿性时,残留的液体团块随着置换气体对固体表面的亲和力而尺寸减小。 Bo的增加可以增加气体饱和度,并且当Bo> 1时可以观察到稳定的位移,因为施加的重力对排水过程具有稳定的影响。

著录项

  • 来源
    《Transport in Porous Media》 |2013年第3期|555-580|共26页
  • 作者单位

    Department of Civil & Environmental Engineering,University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;

    Department of Civil & Environmental Engineering,University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;

    Earth and Environmental Sciences Division, Los Alamos National Laboratory,Los Alamos, NM 87545, USA;

    Department of Civil & Environmental Engineering,University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pore-scale simulations; Fingering; Porous media; Multiphase flows; Lattice Boltzmann;

    机译:孔径模拟;指法;多孔介质多相流;莱迪丝·玻尔兹曼;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号