...
首页> 外文期刊>Thermal engineering >Numerical Simulation of Thermal-Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation
【24h】

Numerical Simulation of Thermal-Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation

机译:各向异性多孔体逼近中液态金属冷却燃料组件中热工过程的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

— The article presents an anisotropic porous body model in which the transfer anisotropy is taken into account through determining—by means of tensor analysis techniques—the drag force, effective viscosity, and thermal conductivity. The model is intended for describing heat-and-mass transfer in fuel assemblies and tube bundles. For closing the system of anisotropic porous body equations, the integral turbulence model developed by the authors is used. To verify how correctly the hydrodynamics and heat transfer are described, a few hydrodynamic and thermal–hydraulic processes in water- and liquid-metal-cooled fuel rod assemblies are simulated in the anisotropic porous body approximation. The results from simulating the flow patterns of lead–bismuth eutectics in the experimental 19-rod assembly and water in a 61-rod nonheated assembly with its flow cross-section locally blocked in the central and corner parts are presented. The thermal–hydraulic processes in the BREST reactor fuel assembly’s heated 19-rod fragment with its flow cross-section locally blocked in the central part were also simulated using the CONV-3D DNS code in the framework of model cross-verification activities. The numerical analysis was carried out using the developed APMod software module implementing the anisotropic porous body model jointly with the integral turbulence model. It was demonstrated from a comparison of the numerical analysis results with both experimental data and simulation results obtained using the CONV-3D computer code that the APMod software module adequately describes the 3D fields of coolant velocities, pressure, and temperature arising in fuel rod assemblies with a locally blocked part of their flow section. The obtained results testify that the anisotropic porous body model can be used for simulating thermal–hydraulic processes in the cores and heat-transfer equipment of prospective reactors.
机译:—本文提出了一种各向异性的多孔体模型,其中通过张量分析技术确定了阻力,有效粘度和导热系数,从而考虑了转移各向异性。该模型旨在描述燃料组件和管束中的热质传递。为了闭合各向异性多孔体方程组,使用了由作者开发的积分湍流模型。为了验证如何正确描述流体力学和热传递,在各向异性多孔体近似中模拟了水冷和液态金属冷却的燃料棒组件中的一些流体动力学和热工过程。给出了模拟的19杆组件中的铅-铋共晶流动模式和61杆非加热组件中的水的流动模式的结果,其流动横截面在中心和拐角部分受阻。在模型交叉验证活动的框架内,还使用CONV-3D DNS代码对BREST反应堆燃料组件加热的19杆碎片的热工过程进行了仿真,其流动截面在中心部分被局部阻塞。使用开发的APMod软件模块进行了数值分析,该模块实现了各向异性多孔体模型和整体湍流模型。通过将数值分析结果与使用CONV-3D计算机代码获得的实验数据和仿真结果进行比较,可以证明APMod软件模块充分描述了燃料棒组件中冷却剂速度,压力和温度的3D场,流量部分的局部阻塞部分。所得结果证明,各向异性多孔体模型可用于模拟预期反应堆堆芯和传热设备中的热工过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号