...
首页> 外文期刊>Surface Science >Hydrogen Adsorption on Ir(111), Ir(100) and Ir(111)-Surface and Coverage Dependence
【24h】

Hydrogen Adsorption on Ir(111), Ir(100) and Ir(111)-Surface and Coverage Dependence

机译:氢在Ir(111),Ir(100)和Ir(111)上的吸附-表面和覆盖率的依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogen adsorption on the perfect Ir(111) as well as the metastable and unreconstructed Ir(100) and Ir(110) surfaces up to saturation coverage has been systematically computed using periodic density functional theory and ab initio atomistic thermodynamics for understanding the interaction mechanism of hydrogen on iridium surfaces. On the Ir(111) surface including van der Waals dispersion, hydrogen adsorption prefers the threefold hollow sites at low coverage and the top sites at high coverage; in agreement with the experiments (Phys. Rev. B 60 (1999) 14016). The computed adsorption energy and desorption temperature of hydrogen agree with the experiments [-0.57 (fcc-3H) and -0.53 (hcp-3H) vs. -0.55 eV; 180 and 325 K vs. 190 and 310 K, respectively]. On the Ir (100) surface, the bridge adsorption sites are preferred in the whole coverage range, in agreement with the LEED pattern (Phys. Rev. B 73 (2006) 75430), however, adsorption energy and desorption temperature are slightly overestimated by including van der Waals dispersion (-1.50 vs. -1.02 +/- 0.15 eV; 470 vs. 425 similar to 389 K). On the Ir(110) surface, short-bridge sites are preferred at low coverage and the top sites become dominant at high coverage, and the calculated desorption temperatures are close to experiments by including van der Waals dispersion (210 and 365 K vs. 220 and 375 K). At low coverage, the different configurations of hydrogen adsorption on the Ir(111) have the similar energies, indicating their negligible repulsive interaction, while the Ir(100) and Ir(110) surfaces prefer regular line-shape adsorption configurations due to attractive interaction, and such adsorption configurations have not been observed experimentally. Our results show that differences in adsorption configurations and energies are associated with their differences in surface structures, and in turn explain the need of different methods in computing the adsorption properties on different surfaces. Such surface-dependent properties should also be possible on other metal surfaces.
机译:使用周期性密度泛函理论和从头算原子热力学系统地计算了理想Ir(111)以及亚稳和未重构的Ir(100)和Ir(110)表面上直至饱和覆盖的氢吸附量,从而了解了H2O3的相互作用机理。铱表面上的氢。在包括范德华分散体的Ir(111)表面上,氢吸附倾向于低覆盖率的三重空心位点和高覆盖率的顶部位点;与实验一致(Phys.Rev.B 60(1999)14016)。计算得出的氢的吸附能和解吸温度与实验一致[-0.57(fcc-3H)和-0.53(hcp-3H)对-0.55 eV; 180和325 K,分别为190和310 K]。在Ir(100)表面上,与LEED模式一致(Phys。Rev. B 73(2006)75430),在整个覆盖范围内均首选桥式吸附位点,但是,吸附能和解吸温度被高估了一点包括范德华分散(-1.50对-1.02 +/- 0.15 eV; 470对425,类似于389 K)。在Ir(110)表面上,低覆盖率首选短桥位,高覆盖率首选顶部桥位,并且通过包括范德华分散(210和365 K对220),计算得出的解吸温度接近于实验。和375 K)。在低覆盖率下,Ir(111)上不同的氢吸附构型具有相似的能量,表明它们的排斥相互作用可忽略不计,而Ir(100)和Ir(110)的表面由于具有吸引力的相互作用而更倾向于规则的线形吸附构型,并且这种吸附构型还没有通过实验观察到。我们的结果表明,吸附构型和能量的差异与其表面结构的差异有关,进而解释了在不同表面上计算吸附性能时需要使用不同方法的问题。这种依赖于表面的特性在其他金属表面上也应该是可能的。

著录项

  • 来源
    《Surface Science》 |2020年第2期|121514.1-121514.11|共11页
  • 作者单位

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China|Synfuels China Co Ltd Natl Energy Ctr Coal Liquids Beijing 101400 Peoples R China|Univ Chinese Acad Sci 19A Yuquan Roat Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China|Synfuels China Co Ltd Natl Energy Ctr Coal Liquids Beijing 101400 Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China|Univ Rostock Leibniz Inst Katalyse eV Albert Einstein Str 29a D-18059 Rostock Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Iridium surfaces; Hydrogen adsorption; Coverage-dependence; Desorption temperature; DFT;

    机译:铱表面氢吸附;覆盖范围依赖性;解吸温度DFT;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号