...
首页> 外文期刊>Surface Science >Atomistic structure of a spinel Li_4Ti_5O_(12) surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry
【24h】

Atomistic structure of a spinel Li_4Ti_5O_(12) surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry

机译:通过扫描隧道显微镜和中能离子散射光谱阐明了尖晶石Li_4Ti_5O_(12)表面的原子结构

获取原文
获取原文并翻译 | 示例
           

摘要

Spinel lithium titanate (Li_4Ti_5O_(12), LTO) is one of the promising anode materials for high-performance lithium-ion batteries (UBs). It is crucial to investigate atomistic structures of LTO surfaces to understand the phenomena at LTO/electrolyte interfaces such as CO_2-gas generation which greatly affects the performance and safety of LIBs. By applying scanning tunneling microscopy (STM) and medium energy ion scattering spectrometry (MEIS) to a LTO( 111) film prepared from a TiO_2 wafer, we found that there exist two kinds of Li-terminated (111) terraces bounded by steps with different heights. In the major terraces, the top hexagonal Li layer is stacked above the oxygen layer, while the top Li layer is stacked above the Ti-Li layer in the minor terraces. The relative stability between the two surface structures seems to depend on the atmosphere due to different stoichiometry. For the major terraces, the LTO surface should have electronic holes due to oxygen-rich stoichiometry, which is a possible origin of CO_2 generation via redox interaction with electrolyte molecules.
机译:尖晶石钛酸锂(Li_4Ti_5O_(12),LTO)是高性能锂离子电池(UBs)的有希望的负极材料之一。研究LTO表面的原子结构以了解LTO /电解质界面处的现象(例如产生CO_2气体)的现象至关重要,这会极大地影响LIB的性能和安全性。通过对由TiO_2晶片制备的LTO(111)膜应用扫描隧道显微镜(STM)和中能离子散射光谱法(MEIS),我们发现存在两种以不同步阶为边界的锂端基(111)台阶高度。在主要平台中,顶部六角形Li层堆叠在氧层上方,而顶部Li层在次要平台中堆叠在Ti-Li层上方。由于不同的化学计量,两个表面结构之间的相对稳定性似乎取决于大气。对于主要阶地,由于富氧化学计量,LTO表面应具有电子空穴,这可能是由于与电解质分子发生氧化还原相互作用而产生CO_2的可能来源。

著录项

  • 来源
    《Surface Science》 |2014年第1期|5-9|共5页
  • 作者单位

    Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (A1ST), 1-8-31 Mi-dorigaoka, Ikeda, Osaka 563-8577, Japan;

    Department of Physics, Ritsumeikan University, Kusatsu, Shiga-ken 525-8577, Japan;

    Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (A1ST), 1-8-31 Mi-dorigaoka, Ikeda, Osaka 563-8577, Japan;

    Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (A1ST), 1-8-31 Mi-dorigaoka, Ikeda, Osaka 563-8577, Japan;

    Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (A1ST), 1-8-31 Mi-dorigaoka, Ikeda, Osaka 563-8577, Japan;

    Department of Physics, Ritsumeikan University, Kusatsu, Shiga-ken 525-8577, Japan;

    Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (A1ST), 1-8-31 Mi-dorigaoka, Ikeda, Osaka 563-8577, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lithium-ion battery; Electrode material; Li_4Ti_5O_(12); Scanning tunneling microscopy; Medium energy ion scattering spectrometry; Atomistic surface structure;

    机译:锂离子电池;电极材料;Li_4Ti_5O_(12);扫描隧道显微镜中能离子散射光谱法;原子表面结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号