首页> 外文期刊>SPE Production and Facilities >Predicting Flow Profile of Horizontal Well by Downhole Pressure and Distributed- Temperature Data for Waterdrive Reservoir
【24h】

Predicting Flow Profile of Horizontal Well by Downhole Pressure and Distributed- Temperature Data for Waterdrive Reservoir

机译:通过井下压力和水驱油藏温度分布数据预测水平井流量剖面

获取原文
获取原文并翻译 | 示例
           

摘要

Downhole pressure and temperature data are important information that helps us understand the bottomhole flow condition. Today, the data are readily available from permanent monitoring systems such as downhole gauges or fiber-optic sensors. In a previous study, we showed that using temperature and pressure data, water entry along a horizontal wellbore can be detected by a semianalytical model. Flow in the wellbore is well-defined, but flow in the reservoir is described by a single-phase, ID model. The assumptions limited application of the model to mostly a single-phase condition.rnIn this paper, we present an improved model that is more flexible. We use a streamline-simulation method to solve the flow problem in the reservoir for fast tracking of reservoir flow. We developed a transient, 3D, multiphase reservoir thermal model to calculate reservoir temperature. We integrated the reservoir flow model and thermal model with a horizontal-well temperature model to predict the pressure and temperature distribution in a horizontal-well system. We apply the model to a synthetic example. The example is an infinite waterdrive case. The results of simulation show that the temperature features in a horizontal well can detect the location and amount of water breakthrough successfully. Meanwhile, even the pressure trend does not reflect the water entrance as clearly as the temperature curve, the capability of which to indentify the reservoir permeability distribution is very helpful in temperature calculation. We apply the model to a field case: a horizontal well in the Sincor field for heavy-oil production. The results showed that we can successfully identify where and how much water enters the horizontal well in this field example.rnWe use an inversion method to interpret the pressure and temperature data to obtain a flow-rate profile along horizontal wells. The inversion method is the traditional Markov Chain Monte Carlo (MCMC) method. This stochastic method searches for the possible solution in the parameter space and uses the Metropolis-Hastings algorithm to judge the acceptance. We discuss how to reduce the parameters to make the inversion method work more efficiently according to the downhole pressure and temperature data.
机译:井下压力和温度数据是重要信息,可帮助我们了解井底流动状况。如今,可以从永久监测系统(例如井下仪表或光纤传感器)轻松获得数据。在先前的研究中,我们表明使用温度和压力数据,可以通过半分析模型检测沿水平井眼的水进入。井眼中的流量定义明确,但油藏中的流量由单相ID模型描述。这些假设将模型的应用限制为大多数单相条件。在本文中,我们提出了一种更灵活的改进模型。我们使用流线模拟方法来解决油藏中的流动问题,以便快速跟踪油藏流动。我们开发了一个瞬态3D多相储层热模型来计算储层温度。我们将油藏流动模型和热模型与水平井温度模型集成在一起,以预测水平井系统中的压力和温度分布。我们将该模型应用于综合示例。该示例是一个无限的水驱案例。仿真结果表明,水平井中的温度特征可以成功地探测出渗水的位置和数量。同时,即使压力趋势也不能像温度曲线那样清晰地反映出入水口,其识别储层渗透率分布的能力对温度计算非常有帮助。我们将模型应用于现场案例:Sincor油田的水平井用于重油生产。结果表明,在该现场实例中,我们可以成功地识别出向何处以及多少水进入水平井。我们使用反演方法来解释压力和温度数据,以获得沿水平井的流量曲线。反演方法是传统的马尔可夫链蒙特卡罗(MCMC)方法。这种随机方法在参数空间中搜索可能的解,并使用Metropolis-Hastings算法来判断可接受性。根据井下压力和温度数据,我们讨论了如何减少参数以使反演方法更有效地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号