首页> 外文期刊>Space Weather >Impact of tidal density variability on orbital and reentry predictions
【24h】

Impact of tidal density variability on orbital and reentry predictions

机译:潮汐密度变化对轨道和折返预测的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Since the first satellites entered Earth orbit in the late 1950's and early 1960's, the influences of solar and geomagnetic variability on the satellite drag environment have been studied, and parameterized in empirical density models with increasing sophistication. However, only within the past 5 years has the realization emerged that “troposphere weather” contributes significantly to the “space weather” of the thermosphere, especially during solar minimum conditions. Much of the attendant variability is attributable to upward-propagating solar tides excited by latent heating due to deep tropical convection, and solar radiation absorption primarily by water vapor and ozone in the stratosphere and mesosphere, respectively. We know that this tidal spectrum significantly modifies the orbital (>200 km) and reentry (60–150 km) drag environments, and that these tidal components induce longitude variability not yet emulated in empirical density models. Yet, current requirements for improvements in orbital prediction make clear that further refinements to density models are needed. In this paper, the operational consequences of longitude-dependent tides are quantitatively assessed through a series of orbital and reentry predictions. We find that in-track prediction differences incurred by tidal effects are typically of order 200 ± 100 m for satellites in 400-km circular orbits and 15 ± 10 km for satellites in 200-km circular orbits for a 24-hour prediction. For an initial 200-km circular orbit, surface impact differences of order 15° ± 15° latitude are incurred. For operational problems with similar accuracy needs, a density model that includes a climatological representation of longitude-dependent tides should significantly reduce errors due to this source.
机译:自从第一批卫星在1950年代末和1960年代初进入地球轨道以来,已经研究了太阳和地磁变异性对卫星阻力环境的影响,并随着经验密度模型的不断完善对其进行了参数化。然而,仅在过去的五年中,才意识到“对流层天气”对热圈的“空间天气”有重大贡献,特别是在最低太阳条件下。随之而来的大部分变化是由于热带深对流潜在加热引起的向上传播的太阳潮,以及平流层和中层大气分别主要被水蒸气和臭氧吸收的太阳辐射。我们知道,该潮汐谱显着改变了轨道(> 200 km)和折返(60-150 km)的拖曳环境,这些潮汐分量引起了经度密度模型尚未模拟的经度变化。然而,当前对改进轨道预测的要求清楚地表明,需要对密度模型进行进一步的改进。在本文中,通过一系列的轨道和折返预测定量评估了与经度相关的潮汐的业务后果。我们发现,对于潮汐效应引起的轨道内预测差异,对于400公里圆轨道上的卫星,通常为200±100 m量级;对于24小时预测,对于200公里圆轨道上的卫星,其量级为15±10 km。对于最初的200 km圆形轨道,会产生15°±15°纬度的表面冲击差。对于具有类似精度需求的操作问题,包括经度依赖潮汐的气候表示的密度模型应显着减少由于该源而引起的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号