首页> 外文期刊>Solid-State Electronics >Structural dependence of breakdown characteristics and electrical degradation in ultrathin RPECVD oxideitride gate dielectrics under constant voltage stress
【24h】

Structural dependence of breakdown characteristics and electrical degradation in ultrathin RPECVD oxideitride gate dielectrics under constant voltage stress

机译:恒定电压应力下超薄RPECVD氧化物/氮化物栅极电介质击穿特性和电降解的结构依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

The structural dependence of breakdown characteristics and electrical degradation in ultrathin oxideitride (O/N) dielectrics, prepared by remote plasma enhanced chemical vapor deposition, is investigated under constant voltage stress. In the early stage of oxide wearout, soft breakdown is a local phenomenon dominated by the tunneling current. After a given period of stress, a strong channel-length dependence of dielectric breakdown and the corresponding stress-induced leakage current from the evolution of increased tunneling current have been found. Stacked O/N dielectrics with interface nitridation demonstrate improved device performance on subthreshold swing and threshold voltage shifts after stress, indicating the suppression of stress-induced traps at the oxide/Si and oxide/drain interfaces compared to thermal oxides. Experimental evidence shows more severe breakdown and device degradation in the threshold voltage, drain current and transconductance for shorter channel PMOSFETs with O/N dielectrics. These degradations result from the enhancement of hole trapping in the gate-drain overlap region as evidenced by a positive off-state leakage current, which leads to hard breakdown, and the complete failure of device functionality.
机译:在恒定电压应力下,研究了通过远程等离子体增强化学气相沉积制备的超薄氧化物/氮化物(O / N)电介质的击穿特性和电降解的结构依赖性。在氧化物磨损的早期,软击穿是由隧穿电流主导的局部现象。在给定的应力周期后,已经发现电介质击穿的强烈的沟道长度依赖性以及由增加的隧穿电流的演化引起的相应的应力引起的泄漏电流。具有界面氮化的堆叠式O / N电介质在应力后的亚阈值摆幅和阈值电压漂移方面显示出改进的器件性能,这表明与热氧化物相比,在氧化物/ Si和氧化物/漏极界面处应力诱导的陷阱得到了抑制。实验证据表明,对于具有O / N介电层的较短沟道PMOSFET,其阈值电压,漏极电流和跨导中的击穿和器件性能会更加严重。这些劣化是由于栅极-漏极重叠区域中空穴陷阱的增强所致,正态截止漏电流证明了这一点,这会导致硬击穿和器件功能的完全失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号