首页> 外文期刊>Solid-State Electronics >Nanoscale CMOS: potential nonclassical technologies versus a hypothetical bulk-silicon technology
【24h】

Nanoscale CMOS: potential nonclassical technologies versus a hypothetical bulk-silicon technology

机译:纳米CMOS:潜在的非经典技术与假设的体硅技术

获取原文
获取原文并翻译 | 示例
           

摘要

Using our process/physics-based compact models (UFDG and UFPDB) in Spice3, we project device characteristics and CMOS performances of nonclassical UTB (FD/SOI and DG) and classical, hypothetical bulk-Si technologies optimized at the L_g = 28 nm node. For the nonclassical MOSFETs (generally with metal gates for V_t control) with the same UTB thickness (t_(Si)), the DG devices are shown to be far superior for SCE control. Also, with regard to speed, the DG devices are generally superior to the FD/SG counterparts because of higher drive currents. However, for light loads and moderate supply voltages, a suboptimal FD/SG design (with the same t_(Si) for both LOP and HP CMOS applications is found to yield speeds comparable to the DG designs, even though its current drive is much lower and its SCEs are much more severe. This surprising result is explained by the much lower FD/SG intrinsic gate capacitance, C_G(V_(GS))- When the FD/SG CMOS design is optimized by aggressive scaling of the UTB thickness, its high-V_(DD) speed diminishes (but is still comparable to that of DG CMOS) because of higher C_G at intermediate gate voltages, while its low-V_(DD) speed improves due to increased current. Compared to these nonclassical CMOS designs, the delay of the classical bulk-Si/ SG CMOS is predicted to be much longer due mainly to its high C_G in the weak/moderate inversion region and relatively low drive current. Finally, we show how FD/SOI CMOS speed is degraded as the BOX is thinned, thereby suggesting that such thinning is not a good design tradeoff.
机译:使用Spice3中基于过程/物理的紧凑模型(UFDG和UFPDB),我们可以预测非经典UTB(FD / SOI和DG)以及在L_g = 28 nm节点上优化的经典假设体硅技术的器件特性和CMOS性能。 。对于具有相同UTB厚度(t_(Si))的非经典MOSFET(通常具有用于V_t控制的金属栅极),DG器件显示出优于SCE控制。另外,在速度方面,由于更高的驱动电流,DG设备通常优于FD / SG。但是,对于轻负载和适中的电源电压,发现次佳的FD / SG设计(在LOP和HP CMOS应用中具有相同的t_(Si))可产生与DG设计相当的速度,即使其电流驱动低得多FD / SG的固有栅极电容C_G(V_(GS))低得多,可以解释这一令人惊讶的结果-当通过大幅缩小UTB厚度优化FD / SG CMOS设计时,其高V_(DD)速度有所降低(但仍与DG CMOS相当),这是因为在中间栅极电压下C_G较高,而低V_(DD)速度则由于电流增加而提高。与这些非经典CMOS设计相比,预测经典块状Si / SG CMOS的延迟会更长,这主要是由于其在弱/中型反转区域中的C_G高以及驱动电流相对较低。最后,我们展示了FD / SOI CMOS速度如何随着BOX变薄了,因此表明这种变薄不是很好的选择标志权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号