...
首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model
【24h】

Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model

机译:杆垫增强土挡墙的抗震性能:振动台试验与修正运动硬化本构模型的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

Reinforced-soil retaining structures possess inherent flexibility, and are believed to be insensitive to earthquake shaking. In fact, several such structures have successfully survived destructive earthquakes (Northridge 1994, Kobe 1995, Kocaeli 1999, and Chi-Chi 1999). This paper investigates experimentally and theoretically the seismic performance of a typical bar-mat retaining wall. First, a series of reduced-scale shaking table tests are conducted, using a variety of seismic excitations (real records and artificial multi-cycle motions). Then, the problem is analyzed numerically employing the finite element method. A modified kinematic hardening constitutive model is developed and encoded in ABAQUS through a user-defined subroutine. After calibrating the model parameters through laboratory element testing, the retaining walls are analyzed at model scale, assuming model parameters appropriate for very small confining pressures. After validating the numerical analysis through comparisons with shaking table test results, the problem is re-analyzed at prototype scale assuming model parameters for standard confining pressures. The results of shaking table testing are thus indirectly "converted" (extrapolated) to real scale. It is shown that: (a) for medium intensity motions (typical of M_s≈6 earthquakes) the response is "quasi-elastic", and the permanent lateral displacement in reality could not exceed a few centimeters; (b) for larger intensity motions (typical of M_s ≈6.5-7 earthquakes) bearing the effects of forward rupture directivity or having a large number of strong motion cycles, plastic deformation accumulates and the permanent displacement is of the order of 10-15 cm (at prototype scale); and (c) a large number of strong motion cycles (N>30) of unrealistically large amplitude (A=1.0g) is required to activate a failure wedge behind the region of reinforced soil. Overall, the performance of the bar-mat reinforced-soil walls investigated in this paper is totally acceptable for realistic levels of seismic excitation.
机译:加筋土保持结构具有固有的柔韧性,并且被认为对地震不敏感。实际上,一些这样的结构已经成功地度过了破坏性地震(Northridge 1994,Kobe 1995,Kocaeli 1999和Chi-Chi 1999)。本文通过实验和理论研究典型的杆垫挡土墙的抗震性能。首先,使用各种地震激励(真实记录和人工多周期运动)进行了一系列缩小规模的振动台测试。然后,使用有限元方法对问题进行数值分析。通过用户定义的子例程,开发了改进的运动硬化本构模型,并在ABAQUS中进行了编码。通过实验室元素测试校准模型参数后,假设模型参数适用于非常小的围压,则按模型比例分析挡土墙。通过与振动台测试结果进行比较验证了数值分析后,在假设标准约束压力模型参数的情况下,以原型比例对问题进行了重新分析。振动台测试的结果因此间接地“转换”(外推)为真实比例。结果表明:(a)对于中等强度运动(典型的M_s≈6级地震),响应是“准弹性”的,并且在实际中的永久横向位移不能超过几厘米; (b)对于较大强度的运动(典型的M_s≈6.5-7地震),具有正向破裂方向性的影响或具有大量的强运动周期,塑性变形会累积,永久位移约为10-15 cm (以原型比例); (c)需要大量振幅(A = 1.0g)不切实际的大运动周期(N> 30)来激活加筋土区域后的破坏楔。总体而言,本文研究的杆垫增强土墙的性能对于实际地震激励水平是完全可以接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号