首页> 外文期刊>Semiconductor science and technology >Picosecond beats in coherent optical spectra of semiconductor heterostructures: photonic Bloch and exciton--polariton oscillations
【24h】

Picosecond beats in coherent optical spectra of semiconductor heterostructures: photonic Bloch and exciton--polariton oscillations

机译:半导体异质结构的相干光谱中的皮秒节拍:光子布洛赫和激子-极化子振荡

获取原文
           

摘要

Propagation of short pulses of light in multilayer semiconductor structures containing excitons is modelled by solving time-dependent Maxwell equations with the use of the scattering state technique. This approach allows this problem to be reduced to finding the eigenstates (scattering states) of the system, subject to the stationary Maxwell equations with appropriate boundary conditions. Then, the time-dependent electric field in the system can be found by Fourier integration of the scattering states. Application of this technique to the problem of light-propagation in laterally confined Bragg mirrors reveals the effect of photonic Bloch oscillations, i.e., oscillations of photons between two inclined mini--gaps of the optical superlattice, analogous to the well-known electronic Bloch oscillations. The scattering state technique is applied to the problem of propagation of exciton-polaritons in semiconductor films. The pulsed excitation induces a grating of dielectric polarization in the direction of propagation of light, which arises through interference between two exciton--polariton branches. The grating evolves backwards relative to the light propagation direction because of the multiple re-emission and re--absorption of photons by excitons. Inhomogeneous broadening of excitons exerts a dramatic influence on the time-resolved coherent optical spectra of semiconductor structures through the vertical motional narrowing effect in bulk crystals and multiple quantum wells (MQWs). The polariton interference governs the resonant Rayleigh scattering (RRS) spectra of the MQWs. In particular, a drastic difference between the RRS spectra of Bragg-arranged and anti-Bragg-arranged MQWs is predicted.
机译:通过使用散射状态技术求解时间相关的麦克斯韦方程,可以模拟短脉冲在包含激子的多层半导体结构中的传播。这种方法可以简化该问题,从而找到系统的本征态(散射态),并服从具有适当边界条件的平稳麦克斯韦方程式。然后,可以通过散射状态的傅立叶积分来找到系统中随时间变化的电场。将该技术应用于横向受限布拉格反射镜中的光传播问题,揭示了光子布洛赫振荡的影响,即光超晶格的两个倾斜小间隙之间的光子振荡,类似于众所周知的电子布洛赫振荡。散射状态技术应用于激子-极化子在半导体膜中的传播问题。脉冲激发沿光的传播方向感应出介电极化的光栅,这是由于两个激子-极化子分支之间的干涉而产生的。由于激子多次重发射和重吸收光子,光栅相对于光传播方向向后发展。激子的不均匀展宽通过块状晶体和多量子阱(MQW)中的垂直运动变窄效应,对半导体结构的时间分辨相干光谱产生了巨大影响。极化子干扰控制着MQW的共振瑞利散射(RRS)光谱。特别地,预测了布拉格排列的MQW和反布拉格排列的MQW的RRS谱之间的巨大差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号