首页> 外文期刊>Semiconductor International >Picosecond Ultrasonics Provides CoSi Characterization
【24h】

Picosecond Ultrasonics Provides CoSi Characterization

机译:皮秒超声波提供CoSi表征

获取原文
获取原文并翻译 | 示例
           

摘要

Silicicles are used to form self-aligned source, drain and gate contact regions in MOS devices. Low-resistivity contact silicides include titanium disili-cide (TiSi_2), cobalt disili-cide (CoSi_2), and nickel silicide (NiSi). Under typical process conditions, these films exhibit resistivities in the 15-20 μΩ-cm range. TiSi_2 has been the silicide of choice because of its thermal stability and ability to reduce oxides that form on the silicon surface. However, as design rules shrink below 0.25 μm, it is difficult to form the low-resistance phase of TiSi_2 (C54) through thermal annealing alone. It is essential that the transition tram the high-resistivity phase (C49) to C54 is complete, because the C49 phase has more than 3x C54's resistivity. In the small lateral dimensions specified by <0.25 μm designs, the transition tempera- ture from the TiSi_2 C49 to C54 phase increases. Meanwhile, junction depth scaling demands thinner silicide and thinner TiSi_2 agglomerates at a lower temperature. These conflicting factors result in a very narrow, usable process window. Unlike TiSi_2, the formation of the lower-resistivity CoSi_2 or NiSi phase is substantially independent of the contact size. CoSi_2 is projected to be the silicide of choice at the 0.13 and possibly the 0.09 μm technology node. In <0.10 μm design rules, NiSi has advantages ―it consumes less silicon than CoSi_2 and the low-resistivity phase forms at a significantly lower temperature. However, NiSi use is limited because any subsequent processing steps that increase the silicide temperature more than ~600℃ can result in formation of higher-resistivity NiSi_2.
机译:硅化物用于在MOS器件中形成自对准的源极,漏极和栅极接触区。低电阻率接触式硅化物包括二硅化钛(TiSi_2),二硅化钴(CoSi_2)和硅化镍(NiSi)。在典型的工艺条件下,这些膜的电阻率在15-20μΩ-cm范围内。 TiSi_2已成为首选的硅化物,因为它具有热稳定性和还原能力,可以还原在硅表面形成的氧化物。然而,随着设计规则缩小到0.25μm以下,仅通过热退火就难以形成TiSi_2(C54)的低电阻相。完成从高电阻率相(C49)到C54的过渡是至关重要的,因为C49相的电阻率是C54的3倍以上。在<0.25μm设计所指定的较小横向尺寸中,从TiSi_2 C49到C54相的转变温度升高。同时,结深度缩放要求在较低温度下使用更薄的硅化物和更薄的TiSi_2附聚物。这些矛盾的因素导致了非常狭窄的可用过程窗口。与TiSi_2不同,较低电阻率的CoSi_2或NiSi相的形成基本上与接触尺寸无关。 CoSi_2有望成为0.13和0.09μm技术节点的首选硅化物。在<0.10μm的设计规则中,NiSi具有优势-与CoSi_2相比,它消耗的硅更少,并且在低得多的温度下形成低电阻率相。但是,NiSi的使用受到限制,因为任何随后将硅化物温度提高到〜600℃以上的处理步骤均会导致形成更高电阻率的NiSi_2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号