首页> 外文期刊>Wissenschaftliche Arbeiten der Fachrichtung Geodasie und Geoinformatik der Leibniz Universitat Hannover >GPS-based Precise Absolute and Relative Kinematic Orbit Determination of Swarm Satellites under Challenging Ionospheric Conditions
【24h】

GPS-based Precise Absolute and Relative Kinematic Orbit Determination of Swarm Satellites under Challenging Ionospheric Conditions

机译:基于GPS的精确绝对和相对运动轨道轨道在挑战电离子条件下的群体卫星

获取原文
           

摘要

Global Positioning System (GPS) receivers have become standard equipment for the precise orbit and baseline determination of LEO satellites since the first installation of a dual-frequency GPS receiver on the TOPEX/Poseidon satellite in 1992. Kinematic orbit determination has attracted a lot of attention in recent years because it is free of models for correcting forces acting on the LEO satellite, which makes it possible to derive the gravity field from the kinematic orbits. The European Space Agency (ESA) Swarm mission launched on November 22, 2013, consists of three identical satellites in near-polar orbits, Swarm A and C flying almost side-by-side at an initial altitude of 460 km, and Swarm B flying in a higher orbit of about 530 km. Each satellite is equipped with a high precision 8-channel dual-frequency GPS receiver for precise orbit determination. Therefore, the Swarm mission offers excellent opportunities to provide temporal gravity field information derived from the kinematic orbits of the satellites for the gap between the Gravity Recovery and Climate Experiment (GRACE) and its follow-on mission (GRACE-FO). In order to contribute to these studies, a software based on Precise Point Positioning (PPP) was developed for kinematic orbit determination in this thesis. The kinematic orbits of Swarm satellites from January 2015 to December 2017 are computed and validated. The three-satellite formation opens up new opportunities to analyze the baseline determination (relative positioning). In this contribution, the kinematic baseline with fixed ambiguities is determined using the GPS double-difference method. Our investigations revealed that carrier phase observations with product baseline 03 can contain half-cycle ambiguities. The latter are repaired after reprocessing the raw GPS by the ESA in 2018, which increases the rate of ambiguity resolution significantly. Compared with the float solution, the quality of the baseline is significantly improved under strong ionospheric scintillations Carrier phase observations from onboard GPS receivers are strongly disturbed by ionospheric scintillations, which degrade the kinematic orbits over the geomagnetic equatorial and polar areas and, thus, the gravity field. The GPS carrier phase observations also suffer from different types of disturbances due to the different properties of ionospheric scintillations over the equatorial and polar areas. In this contribution, a new method is proposed to filter the high-frequency noise and repair the systematic errors in the phase observations, instead of eliminating or down-weighting the disturbed observations, in order to improve the quality of the kinematic orbits. The latter and the gravity field derived can be improved significantly. The systematic errors along the geomagnetic equator bands in the gravity field are also eliminated successfully.
机译:全球定位系统(GPS)接收器已成为Leo卫星的精确轨道和基线确定的标准设备,因为1992年首次安装了Topex / Poseidon卫星的双频GPS接收器。运动轨道测定引起了很多关注近年来,由于它没有模型,用于纠正在Leo卫星上的力量,这使得可以从运动轨道中获得重力场。欧洲航天局(ESA)2013年11月22日推出的批准使命由近极轨道的三个相同的卫星组成,群A和C几乎并排在460公里的初始海拔地区飞行,以及群B飞行在大约530公里的更高轨道上。每个卫星都配备了高精度的8通道双频GPS接收器,用于精确轨道确定。因此,群体特派团提供了优异的机会,提供从卫星的运动轨道衍生的时间重力场信息,以便在重力恢复和气候实验(Grace)之间的间隙和其后续任务(Grace-Fo)之间进行间隙。为了促进这些研究,在本文中开发了一种基于精确点定位(PPP)的软件,用于本文的运动轨道测定。 2015年1月至2017年12月的群卫星的运动轨道是计算和验证的。三卫星形成开辟了分析基线确定的新机会(相对定位)。在这一贡献中,使用GPS双差法测定具有固定模糊的运动基线。我们的调查揭示了与产品基线03的载体相位观察可以含有半周期的歧义。后者在2018年通过ESA再处理原始GPS后修复,这显着增加了模糊分辨率的速度。与浮法解决方案相比,在强电离层闪烁下,基线的质量显着改善,在船上GPS接收器中,通过电离层闪烁强烈扰乱,这将运动轨道降低,从而降低了Geomagnetic逆止和极性区域,因此,重力场地。由于赤道和极地区域上的电离层闪烁的不同性质,GPS载体相位观察结果也存在不同类型的扰动。在这种贡献中,提出了一种新方法来过滤高频噪声并修复相位观察中的系统误差,而不是消除或减轻受干扰的观察,以提高运动轨道的质量。可以显着提高后者和引力的重力场。成功消除了重力场中的地磁赤道带的系统误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号