首页> 外文期刊>Science >Physiology And Climate Change
【24h】

Physiology And Climate Change

机译:生理与气候变化

获取原文
获取原文并翻译 | 示例
           

摘要

Ongoing ecosystem changes in response to climate change include poleward or altitudinal shifts in geographical distribution (1-3), population collapses or local extinctions (4), failure of large-scale animal migrations (5), changes in the seasonal timing of biological events (6), and changes in food availability and food web structure. These changes are largely driven by environmental temperature (1, 7). Examples from aquatic animal communities show that study of physiological mechanisms can help to elucidate these ecosystem changes and to project future ecological trends. All organisms live within a limited range of body temperatures, due to optimized structural and kinetic coordination of molecular, cellular, and systemic processes. Functional constraints result at temperature extremes. Increasing complexity causes narrower thermal windows for whole-organism functions than for cells and molecules, and for animals and plants than for unicellular organisms (8). Direct effects of climatic warming can be understood through fatal decrements in an organism's performance in growth, reproduction, foraging, immune competence, behaviors and competitiveness. Performance in animals is supported by aerobic scope, the increase in oxygen consumption rate from resting to maximal (9). Performance falls below its optimum during cooling and warming. At both upper and lower pejus temperatures, performance decrements result as the limiting capacity for oxygen supply causes hypoxemia (4,8) (see the figure, left). Beyond low and high critical temperatures, only a passive, anaerobic existence is possible. Fish rarely exploit this anaerobic range, but invertebrates inhabiting the highly variable intertidal environment use metabolic depression, anaerobic energy production, and stress protection mechanisms to provide short- to medium-term tolerance of extreme temperatures.
机译:应对气候变化而持续进行的生态系统变化包括地理分布的极高或垂直变化(1-3),人口崩溃或局部灭绝(4),大规模动物迁徙失败(5),生物事件的季节性变化(6)以及食物供应和食物网结构的变化。这些变化很大程度上受环境温度的影响(1、7)。来自水生动物群落的例子表明,对生理机制的研究可以帮助阐明这些生态系统的变化并预测未来的生态趋势。由于分子,细胞和系统过程的优化结构和动力学配比,所有生物都在有限的体温范围内生活。在极端温度下会导致功能限制。复杂性的增加导致全有机功能的热窗比细胞和分子,动植物的热窗窄于单细胞生物(8)。气候变化的直接影响可以通过生物体在生长,繁殖,觅食,免疫能力,行为和竞争能力方面的致命降低来理解。在动物中的表现受有氧范围的支持,耗氧率从静止增加到最大(9)。在冷却和加热期间,性能下降到其最佳性能以下。在较高和较低的温度下,由于氧气供应的限制能力导致低氧血症(4,8),导致性能下降(参见左图)。除了低和高的临界温度,只有被动的,厌氧的存在是可能的。鱼类很少利用该厌氧范围,但生活在潮间变化很大的无脊椎动物利用代谢抑制,厌氧能量产生和压力保护机制来提供对极端温度的中短期耐受性。

著录项

  • 来源
    《Science》 |2008年第5902期|p.690-692|共3页
  • 作者单位

    Animal Ecophysiology, Alfred-Wegener-lnstitute for Polar and Marine Research, 27515 Bremerhaven, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号