首页> 外文期刊>Science in China. Series D, Earth sciences >Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle
【24h】

Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle

机译:陆地生态系统碳循环的多尺度观测和跨尺度力学模型

获取原文
获取原文并翻译 | 示例
       

摘要

To predict global climate change and to implement the Kyoto Protocol for stabilizing atmospheric greenhouse gases concentrations require quantifying spatio-temporal variations in the terrestrial carbon sink accurately. During the past decade multi-scale ecological experiment and observation networks have been established using various new technologies (e.g. controlled environmental facilities, eddy covariance techniques and quantitative remote sensing), and have obtained a large amount of data about terrestrial ecosystem carbon cycle. However, uncertainties in the magnitude and spatio-temporal variations of the terrestrial carbon sink and in understanding the underlying mechanisms have not been reduced significantly. One of the major reasons is that the observations and experiments were conducted at individual scales independently, but it is the interactions of factors and processes at different scales that determine the dynamics of the terrestrial carbon sink. Since experiments and observations are always conducted at specific scales, to understand cross-scale interactions requires mechanistic analysis that is best to be achieved by mechanistic modeling. However, mechanistic ecosystem models are mainly based on data from single-scale experiments and observations and hence have no capacity to simulate mechanistic cross-scale interconnection and interactions of ecosystem processes. New-generation mechanistic ecosystem models based on new ecological theoretical framework are needed to quantify the mechanisms from micro-level fast eco-physiological responses to macro-level slow acclimation in the pattern and structure in disturbed ecosystems. Multi-scale data-model fusion is a recently emerging approach to assimilate multi-scale observational data into mechanistic, dynamic modeling, in which the structure and parameters of mechanistic models for simulating cross-scale interactions are optimized using multi-scale observational data. The models are validated and evaluated at different spatial and temporal scales and real-time observational data are assimilated continuously into dynamic modeling for predicting and forecasting ecosystem changes realistically. In summary, a breakthrough in terrestrial carbon sink research requires using approaches of multi-scale observations and cross-scale modeling to understand and quantify interconnections and interactions among ecosystem processes at different scales and their controls over ecosystem carbon cycle.
机译:为了预测全球气候变化并实施《京都议定书》以稳定大气中温室气体的浓度,需要准确量化陆地碳汇的时空变化。在过去的十年中,已经使用各种新技术(例如受控环境设施,涡旋协方差技术和定量遥感)建立了多尺度的生态实验和观测网络,并获得了大量有关陆地生态系统碳循环的数据。但是,陆地碳汇的大小和时空变化以及对潜在机制的理解的不确定性并未显着降低。主要原因之一是观测和实验是在单独的尺度上独立进行的,但是决定尺度上碳汇动态的是不同尺度上的因素和过程的相互作用。由于实验和观察总是在特定的比例下进行,因此要了解跨比例的相互作用,需要进行机械分析,最好通过机械建模来实现。然而,机械生态系统模型主要基于单尺度实验和观察的数据,因此没有能力模拟机械跨尺度的相互联系和生态系统过程的相互作用。需要基于新的生态理论框架的新一代机械生态系统模型来量化受干扰生态系统的模式和结构从微观快速生态生理响应到宏观缓慢适应的机制。多尺度数据模型融合是一种新兴的将多尺度观测数据同化为机械,动态建模的方法,其中使用多尺度观测数据对用于模拟跨尺度交互的力学模型的结构和参数进行了优化。在不同的时空尺度上对模型进行验证和评估,并将实时的观测数据连续地吸收到动态模型中,以实际地预测和预测生态系统的变化。总而言之,陆地碳汇研究的突破需要使用多尺度观测和跨尺度建模的方法来理解和量化不同规模的生态系统过程之间的相互联系和相互作用,以及对生态系统碳循环的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号