...
首页> 外文期刊>Traitement du Signal >Une nouvelle approche pour la détection de cibles dans les images radar basée sur des distances et moyennes dans des espaces de matrices de covariance
【24h】

Une nouvelle approche pour la détection de cibles dans les images radar basée sur des distances et moyennes dans des espaces de matrices de covariance

机译:基于协方差矩阵空间中距离和均值的雷达图像目标检测新方法

获取原文
获取原文并翻译 | 示例
           

摘要

La présente étude vise à introduire une toute nouvelle classe d'algorithmes en vue de l'application à la détection automatique des cibles sur les images radar dans lesquelles on dispose d'un faible nombre d'échantillons par salve d'émission. Contrairement aux méthodes déjà mises en ?uvre (filtrage TFAC, etc..) qui agissent directement sur les données radar, celle exposée ici consiste à calculer des matrices de covariance à partir de ces données puis de chercher en quels points une matrice de covariance diffère de la matrice ?moyenne? calculée dans un voisinnage. On espère ainsi obtenir des pics de détection plus prononcés au niveau des cibles qu'avec les algorithmes standards. Ceci impose dans un premier temps l'exploitation de résultats déjà mis au point en géométrie différentielle pour définir distances et moyennes dans de tels espaces (cf. [5], [11], [16], [18]) ce que nous récapitulerons dans les sections 2 et 3. L'algorithme à proprement dit ainsi que quelques résultats de détection par cette nouvelle approche sont ensuite présentés dans la section 4 et comparés aux algorithmes classiques. Enfin, dans la section 5, on verra une amélioration possible des méthodes basées sur les matrices de covariance notamment en terme de temps de calcul, grace à l'utilisation des processus auto-régressifs ([7]. [10]).%The following paper aims at presenting new theoretical and algorithmic developments to the problem of target detection in radar imaging. This concept has been explored very recently by the authors as a possible alternative to the standard Fourier transform-based algorithm called TFAC. Indeed, TFAC proves inaccurate in cases where the number of impulsesrnper emission salvo in the radar image becomes small. To avoid lack of resolution of the Fourier transform, we propose an entirely different approach that involves covariance structures of the data instead of raw datas themselves. Working with covariance matrices, as defined by (1), of the complex vectors that represents the radar data has already appeared useful in some other issues related to radar image processing, which motivated their use in this particular problem. The basic idea of the algorithm is identical to other detection schemes: we want to compare a given location on the radar image with its neighbourhood and detect a target as a point where radar data is highly different from the average of its closest neighbours. The difference in our setting comes from the fact that we try to evaluate it through these covariance matrices defined at each point. Assuming that we can derive them from the data, the problem becomes one of de fining and computing adapted distances and averages of such objects. This involves recent results in differential geometric studies of hermitian positive definite matrices'space and is developed in section 2 and 3. The metric on HPD_n(C) needs to satisfy some invariances due to the special structure of covariance matrices, in particular invariance by basis changes which imposes condition (2). This excludes all the usual distances we know like for instance the Frobenius norm. A pleasant framework to derive a good distance is the one of Riemannian geometry. Considering the manifold HPD_n(C), we define a metric on the identity tangent space which we transport to the whole space according to the invariances we want (4). Taking the most simple metric on the identity tangent space, ie the usual euclidean metric, we have defined a riemannian metric satisfying the conditions. Another good point comes from the fact that we have an explicit parametrisation of the geodesies (9) and therefore, integrating along them, the expression of the distance as in (7) and (8). It is very remarkable that the resulting distance is actually the Siegel distance in HPD_n(C), which is also Rao's distance measure between zero-mean Gaussian distributions in information geometry.rnOnce the metric is defined, there is a canonical way to express the mean of several covariance matrices so that we preserve the same invariances. It is given by equation (10). Finding the mean then requires the resolution of a minimization problem to which we cannot express the solution in the general case. This is solved by a gradient descent scheme made possible both by the expression of the geodesies and the gradient. Computation steps are given by the recursive relations (11). Eventually, the defined mean on HPD_n(C) has many interesting properties summarized in theorem 3.1, which makes it more appropriate to our applications than other definitions that can be found in literature. In section 4, we give a first set of results on real images provided by a coastal radar. Starting with raw data, we need to estimate covariance matrices on each radar location. This is done classically by considering auto-regressive models. Since it is not the point of the article, we simply refer to the papers cited about the subject ([7], [10]). Once calculated, we can apply all the previous framework on the covariance matrices. For detection puposes, we compute at each location the mean of the adjacent matrices and compare it to the current covariance matrix through the Siegel distance. In figure 1, this distance is represented function to the point's distance to the radar. Several peaks corresponding to special objects appear on the graph and can be compared to the equivalent peaks obtained by the usual TFAC scheme (figure 2), clearly showing a far better detection efficiency. This result is highlighted when artificial targets are inserted on the initial image (cf. figures 3 and 4).rnFinally, in section 5, we describe an improved version which was considered in order to reduce computational cost of the algorithm. The strategy consists in the use of a more compact representation of the data given directly by reflexion coeffcients of the auto-regressive model. Again, a metric and a mean are defined on the new space following the ideas of information geometry, leading to equations (13) and (14). As shown on figures 6 and 7, detection quality remains similar while computation time is notably improved by a factor 4 within this new scheme. Although, as can be imagined, results are still perfectible, we have presented several new ideas that, in our sense, could pave the way for an interesting approach to radar image processing in general.
机译:本研究旨在介绍一类全新的算法,用于自动检测雷达图像上的目标,其中每个发射突发中的样本数量很少。与已经实施的直接作用于雷达数据的方法(TFAC过滤等)相反,此处公开的方法是根据这些数据计算协方差矩阵,然后找出协方差矩阵在哪些点上存在差异平均矩阵在附近计算。因此,我们希望在目标水平上获得比标准算法更明显的检测峰。这首先需要利用已经在微分几何中得出的结果来定义此类空间中的距离和平均值(参见[5],[11],[16],[18]),我们将总结一下然后在第2节和第3节中。该算法本身以及通过这种新方法得出的一些检测结果将在第4节中介绍,并与经典算法进行比较。最后,在第5节中,由于使用了自动回归过程([7]。[10]),我们将看到基于协方差矩阵的方法的可能改进,特别是在计算时间方面。接下来的论文旨在介绍雷达成像中目标检测问题的新理论和算法发展。作者最近已经研究了这一概念,可以作为基于标准傅立叶变换的称为TFAC的算法的替代方法。确实,在雷达图像中的全发射齐射脉冲数变少的情况下,TFAC被证明是不准确的。为避免缺乏傅立叶变换的分辨率,我们提出了一种完全不同的方法,该方法涉及数据的协方差结构而不是原始数据本身。使用由(1)定义的表示雷达数据的复矢量的协方差矩阵,在与雷达图像处理有关的其他一些问题中似乎很有用,这促使它们在此特定问题中的使用。该算法的基本思想与其他检测方案相同:我们想将雷达图像上的给定位置与其附近进行比较,并将目标检测为雷达数据与其最近邻居的平均值有很大差异的点。我们设置的不同之处在于我们尝试通过在每个点定义的这些协方差矩阵对其进行评估。假设我们可以从数据中导出它们,那么问题就成为定义和计算此类对象的距离和平均值的问题之一。这涉及Hermitian正定矩阵空间的微分几何研究的最新结果,并在第2节和第3节中进行了研究。由于协方差矩阵的特殊结构,特别是按基不变,HPD_n(C)的度量需要满足一些不变性。施加条件(2)的变化。这不包括我们知道的所有常规距离,例如Frobenius范数。得出良好距离的令人愉快的框架是黎曼几何。考虑流形HPD_n(C),我们根据要求的不变性将等式切线空间定义为度量,并将其传输到整个空间(4)。采取恒等式空间上最简单的度量,即通常的欧几里得度量,我们定义了满足条件的黎曼度量。另一个好处是,我们对测地线(9)进行了明确的参数化,因此,沿着测地线进行积分,就可以像(7)和(8)一样显示距离。非常明显的是,结果距离实际上是HPD_n(C)中的Siegel距离,也是信息几何中零均值高斯分布之间的Rao距离度量。rn一旦定义了度量,就有一种规范的方式来表示均值几个协方差矩阵,以便我们保留相同的不变性。它由公式(10)给出。然后,找到均值就需要解决最小化问题,在一般情况下我们无法表达该问题。这可以通过通过测地线的表达和梯度实现的梯度下降方案来解决。计算步骤由递归关系式(11)给出。最终,在HPD_n(C)上定义的均值具有定理3.1中总结的许多有趣的特性,这使其比我们在文献中可以找到的其他定义更适合我们的应用。在第4节中,我们给出了由沿海雷达提供的真实图像的第一组结果。从原始数据开始,我们需要估计每个雷达位置的协方差矩阵。传统上,这是通过考虑自回归模型来完成的。由于这不是本文的重点,因此我们仅引用有关该主题的论文([7],[10])。一旦计算,我们可以将所有先前的框架应用于协方差矩阵。对于检测目的,我们在每个位置计算相邻矩阵的平均值,然后将其与通过Siegel距离的当前协方差矩阵进行比较。在图1中,此距离表示该点到雷达的距离的函数。对应于特殊对象的几个峰出现在图形上,并且可以与通过常规TFAC方案获得的等效峰进行比较(图2),清楚地表明了更高的检测效率。当在原始图像上插入人工目标时,该结果会突出显示(参见图3和4)。最后,在第5节中,我们描述了一种改进的版本,该版本被考虑以降低算法的计算成本。该策略包括使用更紧凑的数据表示形式,该数据由自回归模型的反射系数直接给出。再次,遵循信息几何学的思想在新空间上定义了度量和平均值,从而导致了方程式(13)和(14)。如图6和7所示,在此新方案中,检测质量保持相似,同时计算时间显着提高了4倍。尽管可以想象得到,结果仍然是完美的,但是我们提出了一些新的想法,就我们的观点而言,这些想法可以为雷达图像处理的有趣方法铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号