首页> 外文期刊>九州大学应用力学研究所所報 >渦度の時間発展をもたらす仕組み: 渦度力の捻り
【24h】

渦度の時間発展をもたらす仕組み: 渦度力の捻り

机译:旋涡时间演化的机理:旋涡力的扭转

获取原文
获取原文并翻译 | 示例
           

摘要

Vorticity plays a crucial role in fluid dynamics, so that it is quite important to understand how vorticity is generated. It is usual to describe the evolution of vorticity in terms of tilting and stretching of a vortex line. The same explanation is applied to absolule vorticity in rotating fluids. In oceanography and meteorology, however, relative vorticity is more straightforward than absolute vorticity. There seems to have been some confusion or ambiguity as regards the generation mechanism of relative vorticity in rotating fluids. This article is intended to present a comprehensive and comprehensible picture of the total processes of vorticity generation, both for non-rotating and for rotating fluids. That is, another kind of explanation of vorticity dynamics is proposed based on a concept like the torque on a rigid body. We define vorticity force in a local and instantaneous frame of reference, which is moving and rotating uniformly at the translation velocity and angular velocity of each fluid particle, respectively. In short, vorticity force is the Coriolis force in the local frame of reference translating and rotating as above. It is possible to interpret that the twisting force or torque due to vorticity force changes the vorticity of the fluid particle in concern. This explanation is mathematically rigorous, general, and causal, so that we understand the mechanism of vorticity generation intuitively and visually. Although twisting by vorticity force is most important in fluid dynamics, there are other factors that change the vorticity of fluid particles such as external force or viscous force. As an example or application, we illustrate the balance of vertical vorticity in the subtropical ocean of the northern hemisphere, where β-effect and viscous force contribute to that balance. Finally we clarify the meaning of baroclinic twist and its relation with the thermal-wind balance; we see that baroclinic twist is not the twist of force, but the twist of acceleration. Also we argue the Boussinesq approximation rather in details, where buoyancy twist is shown to be an approximate form of baroclinic twist; it generates only the horizontal components of vorticity.%海洋や大気の大規模な流れは準二次元であり水平流が卓越する.そのため鉛直渦度の力学が極めて重要になる.海や大気に限らず大抵の流れには渦度があり,渦度の制約が流れの様子を強く規定する.例えば,渦線の伸長を許さない非発散純二次元乱流ではエンストロフィーの制約が乱流の発展を支配する.鉛直渦度の力学が海洋大循環を支配することは言うまでもない.
机译:涡旋在流体动力学中起着至关重要的作用,因此了解涡旋是如何产生的非常重要。通常用旋涡线的倾斜和拉伸来描述旋涡的演变。相同的解释适用于旋转流体中的绝对涡度。但是,在海洋学和气象学中,相对涡旋比绝对涡旋更直接。关于旋转流体中相对涡度的产生机理,似乎存在一些混乱或模棱两可的地方。本文旨在提供用于非旋转和旋转流体的涡流产生全过程的全面而可理解的图景。即,基于诸如刚性体上的扭矩的概念,提出了对涡旋动力学的另一种解释。我们在局部和瞬时参考系中定义涡旋力,该涡旋力分别以每个流体粒子的平移速度和角速度均匀地移动和旋转。简而言之,涡旋力是参考的局部框架中科氏力的平移和旋转,如上所述。可以解释为由于旋涡力引起的扭转力或扭矩会改变所关注的流体颗粒的旋涡。这种解释在数学上是严格的,一般的和因果关系的,因此我们可以直观地和直观地了解涡旋产生的机理。尽管涡旋力的扭曲在流体动力学中最重要,但是还有其他因素会改变流体粒子的涡旋性,例如外力或粘性力。作为示例或应用,我们说明了北半球亚热带海洋中垂直涡度的平衡,其中β效应和粘性力有助于这种平衡。最后,我们阐明了斜压扭曲的含义及其与热风平衡的关系。我们看到斜压扭曲不是力的扭曲,而是加速度的扭曲。我们还讨论了Boussinesq逼近,而不是在细节上,浮力扭曲被证明是斜压扭曲的近似形式。 %海洋や大気の大规模な流れは准二次元であり水平流が卓越する。そのため铅直涡度の力学が极めて重要になる。海や大気に限らず大抵抗の流れ铅涡度があり,涡度の插入が流れの様子を强く规定する。例えば,涡线の伸の涡度の力学が海洋大循环を支配することは言うまでもない。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号