首页> 外文期刊>Renewable & Sustainable Energy Reviews >A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield
【24h】

A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield

机译:甲烷转化为氢和纳米碳的综述:催化剂特性和实验参数对产率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Co-synthesis of hydrogen and nanocarbon via methane cracking is a single step technique which meets ever growing need of greenhouse gas (GHG) free energy. Additionally, as produced multifunctional nano-carbon that have a variety of technological applications reduces the process cost. This review is intended to provide a critical and wide-ranging assessment of impact of metal catalyst characteristics and methane decomposing parameters on hydrogen and nanocarbon yield, as well as the alteration of characteristic properties of as-produced nanocarbon. The major factors influencing thermocatalytic decomposition of methane (TCD) includes catalyst support, porosity, surface area, particle size, metal loading, calcination temperature, feed flow rate, partial pressure, and reaction temperature. Literature survey emphasizes that higher temperature and partial pressure together with lower feed flow is the reliable experimental condition to yield high purity hydrogen. Furthermore, initial catalytic activity resembles to the chemical structure of the catalyst and long term activity corresponds to the physical characteristics of catalyst. The structural features of as-produced nanocarbon have inevitable association with catalytic characteristics, such as textural supporters, particle size and material dispersion by physical interactions or chemical interaction. The interaction of metal and support results in modification of electronic properties of metal particles and subsequently influence their catalytic characteristics. In addition to investigation of one-factor-at-a-time experiments, the latest studies with Design of Experiment are also thoroughly reviewed, which analyze the influence of each process variables and their interactions simultaneously. The manuscript, then, extended to the microscopic level understandings on TCD for synthesis of nanocarbon and hydrogen via computational study in the finishing section.
机译:通过甲烷裂解共合成氢和纳米碳是一步技术,可满足不断增长的温室气体(GHG)自由能的需求。另外,具有多种技术应用的所生产的多功能纳米碳降低了工艺成本。这篇综述旨在对金属催化剂特性和甲烷分解参数对氢和纳米碳收率的影响以及所产生的纳米碳的特性改变提供关键和广泛的评估。影响甲烷热催化分解(TCD)的主要因素包括催化剂载体,孔隙率,表面积,粒度,金属负载量,煅烧温度,进料流速,分压和反应温度。文献调查强调,较高的温度和分压以及较低的进料流量是产生高纯度氢气的可靠实验条件。此外,初始催化活性类似于催化剂的化学结构,长期活性对应于催化剂的物理特性。所产生的纳米碳的结构特征不可避免地与催化特性相关,例如质构载体,粒径和通过物理相互作用或化学相互作用引起的材料分散。金属和载体的相互作用导致金属颗粒的电子性质的改变,并随后影响其催化特性。除了一次研究一个因素外,还对实验设计的最新研究进行了全面回顾,该研究同时分析了每个过程变量的影响及其相互作用。然后,通过整理部分的计算研究,手稿扩展到对TCD进行纳米级碳和氢合成的微观理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号