...
首页> 外文期刊>Renewable energy >Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector
【24h】

Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector

机译:非对称加热通道中Al2O3-水纳米流体强迫层流对流的数值分析,用于平板PV / T收集器

获取原文
获取原文并翻译 | 示例
           

摘要

The present paper proposes an investigation on the application of Al2O3-water nanofluid within a PV/T panel in order to assess the potential to improve the performance of the device. The analysis has been carried out by developing a numerical model by means of the commercial software Comsol. Two dimensional nanofluids laminar convection flows for Re comprised between 250 and 1000, concentration between 0% and 6%, inlet temperatures of 293.15 K and 323 K and particles dimension of 20 and 40 nm have been simulated in an asymmetric heated channel. Under an imposed external heat flux of 1000 W on the top surface of the channel, the results show that nanofluids guarantee better cooling performances, in fact a decrease in top wall temperature of similar to 3 K is observed for an inlet temperature of 293.15 K and a reduction of similar to 5 K is observed for an inlet temperature of 323 K. Nusselt number and average heat transfer coefficient for nanofluids also increase in a range between 2% and 15%. On the contrary, a relevant increase of pressure drops is detected. The combined effect of heat transfer enhancement and pressure drop increase has been investigated by implementing an entropy generation analysis, which highlights that reduction of thermal entropy generation is more significant than the increase of frictional entropy generation. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了对Al2O3-水纳米流体在PV / T面板中的应用的研究,以评估改善设备性能的潜力。分析是通过使用商业软件Comsol开发数值模型来进行的。在一个不对称的加热通道中,模拟了二维的Re的纳米流体层流对流,其中250到1000之间,浓度在0%到6%之间,入口温度为293.15 K和323 K,颗粒尺寸为20和40 nm。在通道顶部表面施加1000 W的外部热通量的情况下,结果表明,纳米流体可确保更好的冷却性能,实际上,对于进口温度293.15 K和大约190.15 K,观察到顶壁温度降低了约3K。对于323 K的入口温度,可观察到约5 K的降低。纳米流体的Nusselt数和平均传热系数也在2%到15%之间增加。相反,检测到压降的相应增加。已经通过进行熵产生分析研究了传热增强和压降增加的综合效果,这表明减少热熵产生比增加摩擦熵产生更重要。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Renewable energy》 |2018年第ptaa期|9-21|共13页
  • 作者单位

    Univ Genoa DIME TEC, Div Thermal Energy & Environm Conditioning, Via AllOpera Pia 15-A, I-16145 Genoa, Italy;

    Univ Genoa DIME TEC, Div Thermal Energy & Environm Conditioning, Via AllOpera Pia 15-A, I-16145 Genoa, Italy;

    Univ Genoa DIME TEC, Div Thermal Energy & Environm Conditioning, Via AllOpera Pia 15-A, I-16145 Genoa, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanofluids; PV/T systems; Laminar flow; Entropy generation; Solar energy;

    机译:纳米流体;PV / T系统;层流;熵产生;太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号