首页> 外文期刊>Reliability Engineering & System Safety >Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach
【24h】

Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

机译:超越可靠性,卫星子系统的多状态故障分析:一种统计方法

获取原文
获取原文并翻译 | 示例
       

摘要

Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces "degraded states" or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance of conducting, beyond the traditional reliability analysis, multi-state failure analysis of any engineering system when seeking to understand its failure behavior.
机译:可靠性被广泛认为是空间系统的关键设计属性。在最近的文章中,我们对1990年1月至2008年10月间发射的1584颗地球轨道卫星进行了非参数分析,并对卫星和卫星子系统的可靠性进行了威布尔拟合。在本文中,我们将对卫星和卫星子系统故障的研究扩展到了二进制概念之外。可靠性来分析其异常和多状态故障。在可靠性分析中,所研究的系统或子系统被认为是处于运行状态或故障状态;多状态故障分析引入了“退化状态”或部分故障,因此可以通过更好地解决项目的退化行为及其向完全故障的发展过程提供更多的见解。本工作中用于统计分析的数据库为每个卫星子系统标识了五个状态:三个降级状态,一个完全运行状态和一个故障状态(完全故障)。因为我们的数据集是右删失的,所以我们使用Kaplan-Meier估计器计算每个卫星子系统在状态之间转换的非参数概率,并得出状态之间转换的每种概率的置信区间。然后,我们使用最大似然估计(MLE)方法对这些概率进行参数威布尔拟合。在验证结果之后,我们比较了三个卫星子系统的可靠性和多状态故障分析:推力器/燃料;推力器/燃料;推力器/燃料。遥测,跟踪和控制(TTC);陀螺仪/传感器/反作用轮子系统。结果特别揭示了可以从多状态故障分析以及传统可靠性分析的缺陷或盲点中获得的见解。除了此处提供的特定结果(对太空工业特别有用)外,这项工作还强调了在寻求了解其故障行为时,对任何工程系统进行超越传统可靠性分析的多状态故障分析的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号