...
首页> 外文期刊>Radio Science >Dispersion relation and group velocity for inhomogeneous waves in a hot magnetoplasma with application to an electron-Bernstein-wave propagation experiment in a laboratory plasma
【24h】

Dispersion relation and group velocity for inhomogeneous waves in a hot magnetoplasma with application to an electron-Bernstein-wave propagation experiment in a laboratory plasma

机译:热磁等离子体中非均匀波的色散关系和群速度及其在实验室等离子体中的电子-伯恩斯坦波传播实验中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Lewis and Keller (1962) derive the dispersion relation for homogeneous waves propagating in a hot magnetoplasma. Homogeneous waves are ones for which the real and imaginary parts of the wave vector, kr and ki, are parallel. In this paper a generalization to Lewis and Keller is made for inhomogeneous waves, that is, waves for which kr and ki are not parallel. If ki is assumed to be in the same plane as kr and the magnetic field H in the Lewis and Keller generalization, comparison can be made with the dispersion relation of Stix (1992); good agreement is found with one exception. This generalization is applied to observations of electrostatic (ES) wave propagation in a laboratory plasma. Bernstein waves propagating perpendicular to H are undamped. The dispersion relation for homogeneous waves indicates that severe damping should occur for propagation slightly off perpendicular. Laboratory experiments indicate that severe damping does not occur. The laboratory results can be explained if inhomogeneous waves are considered. Muldrew and Gonfalone (1974) used the dispersion equation for homogeneous waves in a hot magnetoplasma to explain the signal maxima in the pattern when electron-Bernstein waves interfere with the electromagnetic field. Good agreement is obtained when ki is small compared to kr. However, when ki becomes significant, the pattern can no longer be explained. Different approaches to explaining the results using inhomogeneous waves are presented that are superior to the one using homogeneous waves. In one approach, plasma waves with a complex wave vector can propagate without large attenuation, and propagation characteristics can be determined, by choosing the direction of ki to be a free parameter that makes Im{k · vg} = 0, or have a minimum value; k = kr + iki, vg is the complex group velocity ∂ω/∂k and ω is the real angular wave frequency. When this condition is satisfied, good agreement in the signal maxima is obtained with the laboratory experiments if the direction of energy flow in the plasma is taken to be Re{vg}. This method of calculating the interference pattern is compared with the least damped method which calculates the potential of an oscillating point charge in a plasma. Good agreement between the two methods is found if an assumption is made regarding the wave(s) interfering with the ES Bernstein mode.
机译:Lewis and Keller(1962)推导了在热磁浆中传播的均匀波的色散关系。均质波是波矢量的实部和虚部kr和ki平行的波。在本文中,对不均匀波(即kr和ki不平行的波)进行了Lewis和Keller的推广。如果假设ki与kr和Lewis H和Keller推广中的磁场H在同一平面上,则可以与Stix(1992)的色散关系进行比较。达成良好的协议,只有一个例外。这种概括适用于在实验室等离子体中观察静电(ES)波传播的情况。垂直于H传播的伯恩斯坦波没有衰减。均匀波的色散关系表明,应发生严重的阻尼,以便稍微偏离垂直方向传播。实验室实验表明不会发生严重的阻尼。如果考虑不均匀波,可以解释实验室结果。 Muldrew和Gonfalone(1974)使用热磁等离子体中的均匀波的色散方程来解释当电子-伯恩斯坦波干扰电磁场时模式中的信号最大值。当ki小于kr时,将获得良好的一致性。但是,当ki变得很重要时,就无法再解释这种模式了。提出了使用非均匀波解释结果的不同方法,这些方法优于使用均匀波的结果。在一种方法中,具有复杂波矢量的等离子波可以无较大衰减地传播,并且可以通过选择ki的方向为使Im {k·vg} = 0或具有最小值的自由参数来确定传播特性。值; k = kr + iki,vg是复数群速度∂ω/∂k,ω是实角波频率。当满足此条件时,如果将等离子体中的能量流方向设为Re {vg},则可以通过实验室实验在信号最大值中取得良好的一致性。将这种计算干涉图样的方法与最小阻尼方法进行比较,后者是一种计算等离子体中振荡点电荷的电势的方法。如果对干扰ES Bernstein模式的波做出假设,则可以找到两种方法之间的良好一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号