首页> 外文期刊>Quality Control, Transactions >State-of-Charge Balancing Control for ON/OFF-Line Internal Cells Using Hybrid Modular Multi-Level Converter and Parallel Modular Dual L-Bridge in a Grid-Scale Battery Energy Storage System
【24h】

State-of-Charge Balancing Control for ON/OFF-Line Internal Cells Using Hybrid Modular Multi-Level Converter and Parallel Modular Dual L-Bridge in a Grid-Scale Battery Energy Storage System

机译:网格规模电池储能系统中使用混合模块化多电平转换器和并行模块化双L桥的在线/离线内部电池的电量平衡控制

获取原文
获取原文并翻译 | 示例
           

摘要

Cell state-of-charge (SoC) balancing within a battery energy-storage system (BESS) is the key to optimizing capacity utilization of a BESS. Many cell SoC balancing strategies have been proposed; however, control complexity and slow SoC convergence remain as key issues. This paper presents two strategies to achieve SoC balancing among cells: main balancing strategy (MBS) using a cascaded hybrid modular multi-level converter (CHMMC) and a supplementary balancing strategy (SBS) using a cascaded parallel modular dual L-bridge (CPMDLB). The control and monitoring of individual cells with a reduction in the component count and the losses of BESS are achieved by integrating each individual cell into an L-bridge instead of an H-bridge. The simulation results demonstrate a satisfactory performance of the proposed SoC balancing strategy. In this result, SoC balancing convergence point for the cells/modules is achieved at 1000 min when cell-prioritized MBS-CHMMC works without SBS-CPMDLB and at 216.7 min when CPMBS-CHMMC works together with SBS-CPMDLB and when the duration required reduces by 78.33 %. Similarly, a substantial improvement in SoC balancing convergence point for the cells/modules is achieved when module-prioritized MBS-CHMMC works together with SBS-CPMDLB; the duration needed to reach the SoC balancing convergence point for the cells/modules is achieved after 333.3 and 183.3 min.
机译:电池储能系统(BESS)中的电池荷电状态(SoC)平衡是优化BESS容量利用率的关键。已经提出了许多电池SoC平衡策略。但是,控制复杂性和缓慢的SoC收敛仍然是关键问题。本文介绍了两种实现电池间SoC平衡的策略:使用级联混合模块化多电平转换器(CHMMC)的主平衡策略(MBS)和使用级联并行模块化双L桥(CPMDLB)的补充平衡策略(SBS) 。通过将每个单个单元集成到L桥而不是H桥中,可以实现对单个单元的控制和监视,从而减少组件数量并减少BESS的损失。仿真结果证明了所建议的SoC平衡策略的令人满意的性能。在此结果中,当电池优先的MBS-CHMMC在不使用SBS-CPMDLB的情况下工作时,在1000分钟处达到电池/模块的SoC平衡收敛点;在CPMBS-CHMMC与SBS-CPMDLB一起工作时,当所需时间缩短时,在216.7分钟处达到电池/模块的SoC平衡收敛点。增长了78.33%。同样,当模块优先的MBS-CHMMC与SBS-CPMDLB一起工作时,单元/模块的SoC平衡收敛点将得到实质性的改善。在333.3分钟和183.3分钟后,达到了达到电池/模块SoC平衡收敛点所需的持续时间。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号