...
首页> 外文期刊>Pure and Applied Geophysics >Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults
【24h】

Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults

机译:地震断层的加速释放和地震模式的相关方面

获取原文
获取原文并翻译 | 示例
           

摘要

—Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (t f−t) m , where t f is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks. The subcritical crack growth approach developed to describe deformation on a crack prior to the occurrence of dynamic rupture predicts great variability and low asymptotic values of the exponent m that are not compatible with observed ASR phases. Statistical physics studies assuming that system-size failures in a deforming region correspond to critical phase transitions predict establishment of long-range correlations of dynamic variables and power-law statistics before large events. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3-D elastic half space, we show that large model earthquakes are associated with nonrepeating cyclical establishment and destruction of long-range stress correlations, accompanied by nonstationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovsky et al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1-D case that the employed damage rheology leads to a singular power-law equation for strain proportional to (t f−t)−1/3, and a nonsingular power-law relation for cumulative Benioff strain proportional to (t f−t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power-law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = −1/3, the nonsingular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not. The results suggest that observations of moderate and large events contain two complementary end-member predictive signals on the time of future large earthquakes. In portions of seismicity following the characteristic earthquake distribution, such information exists directly in the associated quasi-periodic temporal distribution of large events. In portions of seismicity having broad frequency-size statistics with random or clustered temporal distribution of large events, the ASR phases have predictive information. The extent to which natural seismicity may be understood in terms of these end-member cases remains to be clarified. Continuing studies of evolving stress and other dynamic variables in model calculations combined with advanced analyses of simulated and observed seismicity patterns may lead to improvements in existing forecasting strategies.
机译:-观测研究表明,大地震有时会在加速地震释放(ASR)阶段之前,其特征是服从幂函数时间与失效的关系(tf -t)m ,其中tf 是大事件的失败时间,观察到的m值接近0.3。我们讨论了ASR的属性以及与几个理论框架相关的地震活动模式的相关方面。亚临界裂纹扩展方法被开发用来描述在动态破裂发生之前裂纹的变形,它预示着与观察到的ASR相不兼容的指数m的巨大变异性和低渐近值。统计物理学研究假设变形区域中的系统大小故障对应于临界相变,从而预测了在大事件发生之前动态变量和幂律统计的长期关联的建立。利用Ben-Zion(1996)模型模拟​​的应力和地震历史,分析了在3-D弹性半空间中具有淬灭非均质性的离散断层,我们发现大型地震与非重复性的周期性建立和远距离破坏有关应力相关性,伴有非稳态累积贝尼奥夫应变释放。然后,我们分析与由Lyakhovsky等人的破坏流变学控制的地震动上地壳组成的区域岩石圈模型相关的结果。 (1997)在粘弹性基底上。对于简化的一维情况,我们通过分析证明了所采用的损伤流变导致与(tf -t)-1/3 成正比的应变的奇异幂律方程,以及累积贝尼奥夫应变与(tf -t)1/3 成正比的线性关系。通过将代表线性背景释放的时间线性函数添加到结果中,可以得到后者对区域累积贝尼奥夫应变的简单近似概括。为了超出分析的期望,我们研究了区域岩石圈模型的各种实现所产生的结果,这些模型遵循特征频率大小统计,Gutenberg-Richter幂律分布和模式切换活动,产生了地震活动。我们发现,仅当给定大事件之前的地震活动具有广泛的频率大小统计信息时,ASR阶段才存在。在这种情况下,可以通过m = -1/3的奇异解析关系,m = 0.2的非奇异方程以及m = 1/3的线性项的广义形式很好地拟合模拟的ASR相。所获得的与所有三个关系的良好契合凸显了从此类数据集获取功能形式和参数值的可靠信息的困难。发现通过增加中度事件的发生率和增加平均事件的大小,可以适应模拟ASR阶段的激活过程,前者比后者早几年开始。地震活动中缺乏频率大小统计数据的部分缺少ASR,这可以解释为什么有些大地震之前是ASR,而另一些却没有。结果表明,中度和大型事件的观测包含有关未来大地震发生时两个互补的末端成员预测信号。在遵循地震特征分布的地震活动部分中,此类信息直接存在于大事件的相关准周期时间分布中。在具有广泛频率大小统计,大事件随机或成簇时间分布的地震活动部分,ASR阶段具有预测信息。从这些末端构件的情况来看,对自然地震活动的理解程度还有待澄清。继续对模型计算中的应力变化和其他动态变量进行研究,并结合对已模拟和观测到的地震活动模式的高级分析,可能会导致现有预测策略的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号