...
首页> 外文期刊>Progress in Oceanography >Modelling encounter rates and distribution of mobile predators and prey
【24h】

Modelling encounter rates and distribution of mobile predators and prey

机译:建模移动捕食者和猎物的遭遇率和分布

获取原文
获取原文并翻译 | 示例
           

摘要

Marine ecosystem models often contain modules for two phytoplankton compartments (flagellates and diatoms) and two zooplankton groups (micro- and mesozooplankton). The models rarely include fish, not even as an agent in zooplankton mortality, which is often formulated as a constant rate. This mortality rate is treated as a free parameter, which can be used to tune or stabilize the model. There are major gaps in our knowledge and modelling capabilities of interactions at the higher trophic levels for example with regards to movement of fish at different scales, prey selection, and zooplankton responses to predators. Here, we argue that there are good reasons for making zooplankton mortality dependent on some key environmental variables known to affect the interaction strength between zooplankton and fish. In addition, since fish are highly mobile organisms, often moving in large groups, there is a need to better understand and model their horizontal migration and to include this in ecosystem models. We present basic models for light-dependent encounters between fish and their zooplankton prey and illustrate how predator-prey interactions can be modelled for herring-Calanus and cod-capelin interactions using individual-based models with super-individuals. In the latter two cases individual displacement is determined by movement behaviour and ocean circulation, and growth and mortality become emergent properties resulting from local encounters between predators and prey. Similarly movement behaviours emerge from simple adaptive rules or more complex models where behavioural strategies are evolved using a genetic algorithm. Such models are versatile and we argue that emergent mortality and growth rates resulting from adaptive behaviours and key environmental forcing are essential for realistic representation of fish-zooplankton interactions.
机译:海洋生态系统模型通常包含两个浮游植物区隔(鞭毛藻和硅藻)和两个浮游动物组(微型浮游藻和中游浮游藻)的模块。这些模型很少包括鱼类,甚至没有作为浮游动物死亡率的诱因,通常将其定为恒定速率。该死亡率被视为自由参数,可用于调整或稳定模型。在较高营养级别的相互作用的知识和建模能力方面,例如在不同规模的鱼类运动,猎物选择和浮游动物对捕食者的反应方面,存在重大差距。在这里,我们认为有充分的理由使浮游动物的死亡率取决于一些关键的环境变量,这些变量会影响浮游动物与鱼类之间的相互作用强度。此外,由于鱼类是高度易移动的生物,通常成群移动,因此有必要更好地了解和模拟其水平迁移并将其纳入生态系统模型。我们提出了鱼类与浮游动物猎物之间光依赖相遇的基本模型,并说明了如何使用基于个体的超个体模型为鲱鱼-卡氏和鳕鱼-毛鳞鱼相互作用建模捕食者-猎物相互作用。在后两种情况下,个体的移位取决于运动行为和海洋环流,生长和死亡率成为掠食者和猎物之间局部相遇的结果。同样,运动行为也来自简单的自适应规则或更复杂的模型,其中使用遗传算法来演化行为策略。这样的模型是通用的,我们认为由适应行为和关键环境强迫导致的紧急死亡和增长率对于真实地表示鱼-浮游生物相互作用至关重要。

著录项

  • 来源
    《Progress in Oceanography》 |2010年第2期|93-104|共12页
  • 作者

    Geir Huse; Oyvind Fiksen;

  • 作者单位

    Institute of Marine Research, Box 1870 Nordnes, N-5817 Bergen, Norway;

    rnDepartment of Biology, University of Bergen, Box 7803, N-5020 Bergen, Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号