首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli
【24h】

The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli

机译:基于大肠杆菌AmtB晶体结构的氨转运机理

获取原文
获取原文并翻译 | 示例
           

摘要

Ammonium is one of the most important nitrogen sources for bacteria, fungi, and plants, but it is toxic to animals. The ammonium transport proteins (methylamine permeases/ammonium transporters/rhesus) are present in all domains of life; however, functional studies with members of this family have yielded controversial results with respect to the chemical identity (NH_4~+ or NH_3) of the transported species. We have solved the structure of wild-type AmtB from Escherichia coli in two crystal forms at 1.8-and 2.1-A resolution, respectively. Substrate transport occurs through a narrow mainly hydrophobic pore located at the center of each monomer of the trimeric AmtB. At the periplasmic entry, a binding site for NH_4~+ is observed. Two phenylalanine side chains (F107 and F215) block access into the pore from the periplasmic side. Further into the pore, the side chains of two highly conserved histidine residues (H168 and H318) bridged by a H-bond lie adjacent, with their edges pointing into the cavity. These histidine residues may facilitate the deprotonation of an ammonium ion entering the pore. Adiabatic free energy calculations support the hypothesis that an electrostatic barrier between H168 and H318 hinders the permeation of cations but not that of the uncharged NH_3. The structural data and energetic considerations strongly indicate that the methylamine permeases/ammonium transporters/rhesus proteins are ammonia gas channels. Interestingly, at the cytoplasm ic exit of the pore, two different conformational states are observed that might be related to the inactivation mechanism by its regulatory partner.
机译:铵是细菌,真菌和植物最重要的氮源之一,但对动物有毒。铵转运蛋白(甲胺通透酶/铵转运蛋白/恒河猴)存在于生活的所有领域。然而,与该家族成员进行的功能研究在运输物种的化学特性(NH_4〜+或NH_3)方面产生了有争议的结果。我们已经解决了来自大肠杆菌的野生型AmtB的结构,分别为两种晶体形式,分辨率分别为1.8-A和2.1-A。底物运输通过位于三聚体AmtB的每个单体中心的狭窄的主要是疏水性孔发生。在周质进入处,观察到NH_4〜+的结合位点。两个苯丙氨酸侧链(F107和F215)阻止从周质侧进入孔中。进一步进入孔中,由H键桥接的两个高度保守的组氨酸残基(H168和H318)的侧链相邻,其边缘指向空腔。这些组氨酸残基可以促进进入孔的铵离子的去质子化。绝热自由能的计算支持以下假设:H168和H318之间的静电势垒会阻碍阳离子的渗透,但不会阻碍不带电荷的NH_3的渗透。结构数据和能量方面的考虑强烈表明,甲胺通透酶/铵转运蛋白/恒河猴蛋白是氨气通道。有趣的是,在孔的细胞质出口处,观察到两个不同的构象状态,这可能与其调节伙伴的失活机理有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号