首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity.
【24h】

Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity.

机译:控制有机金属配合物的配体取代反应:调节癌细胞的细胞毒性。

获取原文
获取原文并翻译 | 示例
           

摘要

Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
机译:有机金属化合物为治疗剂的设计提供了广阔的范围,但是这一途径尚未得到广泛的探索。设计抗癌复合物的关键概念是优化化学反应性,以允许对靶位点(例如DNA)的容易攻击,而避免对与不良副作用相关的其他位点的攻击。在这里,我们考虑如何为[(eta6-arene)Ru(乙二胺)(X)] n +类型的单官能“钢琴凳”钌(II)芳烃配合物实现此结果。与生物分子反应的潜在重要激活机制是水解。密度泛函计算表明,水合(H2O取代X)是通过协调的配体交换机制发生的。我们使用紫外可见光谱法研究了21种配合物的水解动力学和平衡,这些配合物包含卤化物和拟卤化物,吡啶(py)衍生物和硫醇盐,以及苯(bz)或取代的bz作为芳烃, HPLC和电喷雾MS。报告了六个复合物的X射线结构。通常,快速水解的复合物(例如X =卤化物[芳烃=六甲基苯(hmb)])或适度缓慢水解的复合物(例如X =叠氮化物,二氯吡啶(arene = hmb)]对A2780人卵巢癌细胞具有活性,而不含水的复合物(例如X = py)是不活跃的。一个令人着迷的例外是X =硫酚盐络合物,它几乎不水解,并且似乎是通过不同的机理活化的。调节此类有机金属钌芳烃化合物的化学反应性的能力应有助于优化其作为抗癌剂的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号