首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >8-oxoguanine-mediated Transcriptional Mutagenesis Causes Ras Activation In Mammalian Cells
【24h】

8-oxoguanine-mediated Transcriptional Mutagenesis Causes Ras Activation In Mammalian Cells

机译:8-氧鸟嘌呤介导的转录诱变导致哺乳动物细胞中的ras活化。

获取原文
获取原文并翻译 | 示例
           

摘要

8-Oxoguanine (8OG) is efficiently bypassed by RNA polymerases in vitro and in bacterial cells in vivo, leading to mutant transcripts by directing incorporation of an incorrect nucleotide during transcription. Such transcriptional mutagenesis (TM) may produce a pool of mutant proteins. In contrast, transcription-coupled repair safeguards against DNA damage, contingent upon the ability of lesions to arrest elongating RNA polymerase. In mammalian cells, the Cockayne syndrome B protein (Csb) mediates transcription-coupled repair, and its involvement in the repair of 8OG is controversial. The DNA glycosylase Ogg1 initiates base excision repair of 8OG, but its influence on TM is unknown. We have developed a mammalian system for TM in congenic mouse embryonic fibro-blasts (MEFs), either WT or deficient in Ogg1 (ogg~(-/-)), Csb (csb~(-/-)), or both. This system uses expression of the Ras oncogene in which an 8OG replaces guanine in codon 61. Repair of 8OG restores the WT sequence; however, bypass and misinsertion opposite this lesion during transcription leads to a constitutively active mutant Ras protein and activation of downstream signaling events, including increased phosphorylation of ERK kinase. Upon transfec-tion of MEFs with replication-incompetent 8OG constructs, we observed a marked increase in phospho-ERK in ogg~(-/-) and csb~(-/-) -ogg~(-/-) cells at 6 h, indicating persistence of the lesion and the occurrence of TM. This effect is absent in WT and csb~(-/-) cells, suggesting rapid repair. These studies provide evidence that 8OG causes TM in mammalian cells, leading to a phenotypic change with important implications for the role of TM in tumorigenesis.
机译:在体外和体内细菌细胞中,RNA聚合酶可有效地绕过8-氧鸟嘌呤(8OG),通过指导转录过程中错误核苷酸的掺入而导致突变体转录本。此类转录诱变(TM)可能产生大量突变蛋白。相比之下,转录偶联修复可防止DNA损伤,这取决于病变阻止延长RNA聚合酶的能力。在哺乳动物细胞中,Cockayne综合征B蛋白(Csb)介导转录偶联修复,并且其参与8OG修复的过程还存在争议。 DNA糖基化酶Ogg1启动8OG的碱基切除修复,但对TM的影响尚不清楚。我们已经开发出了野生型或缺乏Ogg1(ogg〜(-/-)),Csb(csb〜(-/-))或二者兼有的同系小鼠胚胎成纤维细胞(MEF)中的TM哺乳动物系统。该系统使用Ras癌基因的表达,其中8OG取代了61号密码子中的鸟嘌呤。8OG的修复恢复了WT序列;然而,在转录过程中与此病变相反的旁路和错误插入会导致组成型活性突变Ras蛋白和下游信号传导事件的激活,包括ERK激酶的磷酸化增加。用复制能力不佳的8OG构建体转化MEF后,我们观察到在6小时时,ogg〜(-/-)和csb〜(-/-)-ogg〜(-/-)细胞中的磷酸化ERK明显增加,表示病变的持续性和TM的发生。 WT和csb〜(-/-)细胞不存在这种作用,提示快速修复。这些研究提供了证据表明8OG在哺乳动物细胞中引起TM,导致表型改变,这对TM在肿瘤发生中的作用具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号