...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen
【24h】

Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen

机译:揭示人类真菌病原体翻译歧义耐受性的结构基础

获取原文
获取原文并翻译 | 示例
           

摘要

In a restricted group of opportunistic fungal pathogens the universal leucine CUG codon is translated both as serine (97%) and leu-cine (3%), challenging the concept that translational ambiguity has a negative impact in living organisms. To elucidate the molecular mechanisms underlying the in vivo tolerance to a nonconserved genetic code alteration, we have undertaken an extensive structural analysis of proteins containing CUG-encoded residues and solved the crystal structures of the two natural isoforms of Candida albi-cans seryl-tRNA synthetase. We show that codon reassignment resulted in a nonrandom genome-wide CUG redistribution tailored to minimize protein misfolding events induced by the large-scale leucine-to-serine replacement within the CTG clade. Leucine or serine incorporation at the CUG position in C albicans seryl-tRNA synthetase induces only local structural changes and, although both isoforms display tRNA serylation activity, the leucine-contain-ing isoform js more active. Similarly, codon ambiguity is predicted to shape the function of C. albicans proteins containing CUG-encoded residues in functionally relevant positrons, some of which have a key role in signaling cascades associated with morphological changes and pathogenesis. This study provides a first detailed analysis on natural reassignment of codon identity, unveiling a highly dynamic evolutionary pattern of thousands of fungal CUG codons to confer an optimized balance between protein structural robustness and functional plasticity.
机译:在有限的机会性真菌病原体中,通用亮氨酸CUG密码子翻译为丝氨酸(97%)和亮氨酸(3%),挑战了翻译歧义性对活生物体产生负面影响的概念。为了阐明体内对非保守遗传密码改变的耐受性的分子机制,我们对包含CUG编码残基的蛋白质进行了广泛的结构分析,并解决了假丝酵母念珠菌丝氨酰tRNA合成酶的两种天然同工型的晶体结构。我们显示,密码子的重新分配导致了非随机的全基因组CUG重新分配,该重新分配旨在最大程度地减少CTG进化枝中大规模亮氨酸到丝氨酸置换引起的蛋白质错误折叠事件。在白色念珠菌丝氨酰-tRNA合成酶中CUG位置的亮氨酸或丝氨酸掺入仅诱导局部结构变化,尽管这两种同工型均显示出tRNA的Saselation活性,但含有亮氨酸的同工型js更具活性。同样,密码子的歧义性预计会影响功能相关正电子中含有CUG编码残基的白色念珠菌蛋白的功能,其中一些在信号传递与形态变化和发病机制有关的级联中起关键作用。这项研究首次对密码子身份的自然重新分配进行了详细的分析,揭示了数千个真菌CUG密码子的高度动态进化模式,从而在蛋白质结构坚固性和功能可塑性之间赋予了最佳的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号