首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Multistage nanoparticle delivery system for deep penetration into tumor tissue
【24h】

Multistage nanoparticle delivery system for deep penetration into tumor tissue

机译:多级纳米颗粒输送系统,可深入渗透到肿瘤组织中

获取原文
获取原文并翻译 | 示例
           

摘要

Current Food and Drug Administration-approved cancer nano-therapeutics, which passively accumulate around leaky regions of the tumor vasculature because of an enhanced permeation and retention (EPR) effect, have provided only modest survival benefits. This suboptimal outcome is likely due to physiological barriers that hinder delivery of the nanotherapeutics throughout the tumor. Many of these nanotherapeutics are ≈100 nm in diameter and exhibit enhanced accumulation around the leaky regions of the tumor vasculature, but their large size hinders penetration into the dense collagen matrix. Therefore, we propose a multistage system in which 100-nm nanoparticles "shrink" to 10-nm nanopar-ticles after they extravasate from leaky regions of the tumor vasculature and are exposed to the tumor microenvironment. The shrunken nanoparticles can more readily diffuse throughout the tumor's interstitial space. This size change is triggered by proteases that are highly expressed in the tumor microenvironment such as MMP-2, which degrade the cores of 100-nm gelatin'nanoparticles, releasing smaller 10-nm nanoparticles from their surface. We used quantum dots (QD) as a model system for the 10-nm particles because their fluorescence can be used to demonstrate the validity of our approach. In vitro MMP-2 activation of the multistage nanoparticles revealed that the size change was efficient and effective in the enhancement of diffusive transport. In vivo circulation half-life and intratumoral diffusion measurements indicate that our multistage nanoparticles exhibited both the long circulation half-life necessary for the EPR effect and the deep tumor penetration required for delivery into the tumor's dense collagen matrix.
机译:目前的食品和药物管理局批准的癌症纳米疗法由于渗透和保留(EPR)效应的增强而被动地聚集在肿瘤脉管系统的泄漏区域周围,仅提供了适度的生存益处。这种次佳的结果可能是由于生理障碍阻碍了纳米治疗剂在整个肿瘤中的传递。这些纳米治疗剂中的许多直径约为100 nm,并在肿瘤脉管系统的渗漏区域周围表现出增强的积累,但是它们的大尺寸阻碍了其向致密胶原基质的渗透。因此,我们提出了一个多阶段系统,其中100 nm纳米颗粒从肿瘤脉管系统的渗漏区域渗出并暴露于肿瘤微环境后,“收缩”到10 nm纳米颗粒。收缩的纳米颗粒可以更容易地扩散到整个肿瘤的间隙空间。这种尺寸变化是由在肿瘤微环境中高度表达的蛋白酶(例如MMP-2)触发的,该蛋白酶降解100 nm明胶纳米颗粒的核心,从其表面释放较小的10 nm纳米颗粒。我们使用量子点(QD)作为10 nm粒子的模型系统,因为它们的荧光可以用来证明我们方法的有效性。多级纳米粒子的体外MMP-2活化显示,尺寸变化有效且有效地促进了扩散运输。体内循环半衰期和肿瘤内扩散测量结果表明,我们的多级纳米颗粒既表现出EPR效应所必需的长循环半衰期,又表现出递送至肿瘤的致密胶原蛋白基质所需的深层肿瘤穿透能力。

著录项

  • 来源
  • 作者单位

    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;

    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;

    Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;

    Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;

    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;

    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    drug delivery; cancer therapy; nanomedicine;

    机译:药物输送;癌症治疗;纳米药物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号