首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Single-molecule dissection of the high-affinity cohesin-dockerin complex
【24h】

Single-molecule dissection of the high-affinity cohesin-dockerin complex

机译:高亲和力cohesin-dockerin复合物的单分子解剖

获取原文
获取原文并翻译 | 示例
           

摘要

Cellulose-degrading enzyme systems are of significant interest from both a scientific and technological perspective due to the diversity of cellulase families, their unique assembly and substrate binding mechanisms, and their potential applications in several key industrial sectors, notably cellulose hydrolysis for second-generation biofuel production. Particularly fascinating are cellulosomes, the multimodular extracellular complexes produced by numerous anaerobic bacteria. Using single-molecule force spectroscopy, we analyzed the mechanical stability of the intermolecular interfaces between the cohesin and the dockerin modules responsible for self-assembly of the cellulosomal components into the multienzyme complex. The observed cohesin-dockerin rupture forces (>120 pN) are among the highest reported for a receptor-ligand system to date. Using an atomic force microscope protocol that quantified single-molecule binding activity, we observed force-induced dissociation of calcium ions from the duplicated loop-helix F-hand motif located within the dockerin module, which in the presence of EDTA resulted in loss of affinity to the cohesin partner. A cohesin amino acid mutation (D39A) that eliminated hydrogen bonding with the dockerin's critically conserved serine residues reduced the observed rupture forces. Consequently, no calcium loss occurred and dockerin activity was maintained throughout multiple forced dissociation events. These results offer insights at the single-molecule level into the stability and folding of an exquisite class of high-affinity protein-protein interactions that dictate fabrication and architecture of cellulose-degrading molecular machines.
机译:由于纤维素酶家族的多样性,其独特的组装和底物结合机制以及它们在几个关键工业领域的潜在应用,特别是从纤维素水解中获得的第二代生物燃料,从科学和技术角度来看,纤维素降解酶系统都引起了人们的极大兴趣。生产。尤其令人着迷的是纤维素体,它是由许多厌氧细菌产生的多模块细胞外复合物。使用单分子力谱,我们分析了粘着蛋白和码头素模块之间的分子间界面的机械稳定性,该模块负责将纤维素组分自组装成多酶复合物。迄今为止,观察到的粘着蛋白-dockerin断裂力(> 120 pN)是报道的受体-配体系统中最高的。使用定量单分子结合活性的原子力显微镜协议,我们观察到了力诱导的钙离子从位于dockerin模块内的重复环-螺旋F-手基序解离,这在EDTA存在下导致亲和力丧失给cohesin伙伴。消除与dockerin的关键保守丝氨酸残基的氢键键合的粘着蛋白氨基酸突变(D39A)降低了观察到的断裂力。因此,在多次强制解离事件中,没有发生钙流失,并且维持了dockerin活性。这些结果在单分子水平上为精妙类的高亲和力蛋白质-蛋白质相互作用的稳定性和折叠提供了见识,这些相互作用决定了降解纤维素的分子机器的制造和结构。

著录项

  • 来源
  • 作者单位

    Lehrstuhl fuer Angewandte Physik, Center for NanoScience and Center for Integrative Protein Science, Ludwig-Maximilians-Universitaet, 80799 Munich, Germany;

    Lehrstuhl fuer Angewandte Physik, Center for NanoScience and Center for Integrative Protein Science, Ludwig-Maximilians-Universitaet, 80799 Munich, Germany;

    Departments of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel;

    Departments of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel;

    Departments of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel;

    Departments of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel;

    Lehrstuhl fuer Angewandte Physik, Center for NanoScience and Center for Integrative Protein Science, Ludwig-Maximilians-Universitaet, 80799 Munich, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    molecular recognition; protein unfolding;

    机译:分子识别蛋白质展开;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号