首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Progress on first-principles-based materials design for hydrogen storage
【24h】

Progress on first-principles-based materials design for hydrogen storage

机译:储氢第一性原理材料设计的进展

获取原文
获取原文并翻译 | 示例
           

摘要

This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.
机译:本文简要总结了吸附剂材料中储氢领域的研究活动,并报告了我们在此类材料设计方面的最新工作和未来方向。与金属氢化物和复杂的化学氢化物相比,描述了基于吸附的储氢方法的不同特征。我们根据两个关键技术问题将吸氢材料的研究分类:(i)构建具有高孔隙率的稳定骨架结构,和(ii)增加氢分子与表面的结合亲和力,超出通常的范德华相互作用。网状化学的最新发展被总结为解决第一个问题的手段。理论研究主要集中在第二个问题上,根据潜在的相互作用机理可以分为三类:基于碱性阳离子的静电相互作用,与开放过渡金属的Kubas相互作用以及涉及Ca和其他非过渡金属的轨道相互作用。从头算研究到使用力场参数的分子动力学模拟,都对实现理论预测的层次计算方法进行了说明。我们还讨论了实际储氢量,这取决于充电和放电条件。本文还介绍了氢气溢出机制在提高存储容量方面的实用性和实用性。

著录项

  • 来源
  • 作者单位

    lnterdisciplinary School of Green Energy, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 689-798,Korea;

    Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea;

    Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea;

    Hanwha Chemical R&D Center, Daejeon 305-804, Korea;

    Hanwha Chemical R&D Center, Daejeon 305-804, Korea;

    Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号