首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria
【24h】

Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria

机译:甲氧杆菌素结构的变化会影响甲烷氧化细菌对铜的利用

获取原文
获取原文并翻译 | 示例
           

摘要

Methane-oxidizing bacteria are nature's primary biological mechanism for suppressing atmospheric levels of the second-most important greenhouse gas via methane monooxygenases (MMOs). The copper-containing participate enzyme is the most widespread and efficient MMO. Under low-copper conditions methane-oxidizing bacteria secrete the small copper-binding peptide methanobactin (mbtin) to acquire copper, but how variations in the structures of mbtins influence copper metabolism and species selection are unknown. Methanobactins have been isolated from Methylocystis strains M and hirsuta CSC1, organisms that can switch to using an iron-containing soluble MMO when copper is limiting, and the nonswitchover Methylocystis rosea. These mbtins are shorter, and have different amino acid compositions, than the characterized mbtin from Methylosinus trichosporium 0B3b. A coordinating pyrazinedione ring in the Methylocystis mbtins has little influence on the Cu(l) site structure. The Methylocystis mbtins have a sulfate group that helps stabilize the Cu(l) forms, resulting in affinities of approximately 1021 M 1. The Cu(ll) affinities vary over three orders of magnitude with reduction potentials covering approximately 250 mv, which may dictate the mechanism of intracellular copper release. Copper uptake and the switchover from using the iron-containing soluble MMO to the copper-containing particulate enzyme is faster when mediated by the native mbtin, suggesting that the amino acid sequence is important for the interaction of mbtins with receptors. The differences in structures and properties of mbtins, and their influence on copper utilization by methane-oxidizing bacteria, have important implications for the ecology and global function of these environmentally vital organisms.
机译:甲烷氧化细菌是自然界通过甲烷单加氧酶(MMO)抑制大气中第二重要温室气体的主要生物机制。含铜参与酶是最广泛和最有效的MMO。在低铜条件下,甲烷氧化细菌会分泌小的铜结合肽蛋氨酸杆菌(mbtin)来获得铜,但是mbtins结构的变化如何影响铜的代谢和物种选择尚不清楚。已从甲基囊藻菌株M和hirsuta CSC1中分离出了甲烷菌素,这些生物可以在铜受到限制时转换为使用含铁的可溶性MMO,并且不能转换为玫瑰红孢霉。这些mbtin比来自甲基毛孢霉0B3b的特征mbtin短,并且具有不同的氨基酸组成。甲基囊藻中的配位吡嗪二酮环对Cu(l)位点结构几乎没有影响。甲基囊藻菌mbstins有一个硫酸盐基团,有助于稳定Cu(l)形式,导致亲和力约为1021 M1。Cu(II)亲和力在三个数量级上变化,还原电位覆盖约250 mv,这可能决定了细胞内铜释放的机制。当由天然mbtin介导时,铜的吸收和从使用含铁的可溶性MMO到含铜的颗粒酶的转换更快,这表明氨基酸序列对于mbtin与受体的相互作用很重要。 mbtins结构和性质的差异,以及它们对甲烷氧化细菌对铜利用的影响,对这些对环境至关重要的生物的生态学和全球功能具有重要意义。

著录项

  • 来源
  • 作者单位

    Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;

    Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;

    Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;

    School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom;

    Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;

    Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号