...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >New features of solid particle erosion damage of control stage blades in supercritical steam turbine
【24h】

New features of solid particle erosion damage of control stage blades in supercritical steam turbine

机译:超临界汽轮机控制级叶片固体颗粒冲蚀破坏的新特征

获取原文
获取原文并翻译 | 示例
           

摘要

Reducing solid particle erosion of blades is one of the most urgent problems for high-parameter steam turbine power generation technology. Based on the erosion rate model and particle rebound model of blade materials obtained through accelerated erosion test under high temperature, erosion characteristics of flaky particles in control stage of a typical supercritical steam turbine were systemically studied using three-dimensional numerical simulation method. The erosion mechanism of hard coatings on nozzle suction surface is first revealed, and erosion resistance of boride coating with large oxide particles is validated through high-temperature erosion test. Results show that serious erosion damage of boride coating on the latter half of nozzle suction surface is caused by the combined rebounded impingement of large particles between 1000 mu m and 2000 mu m after their initial impingement on the nozzle pressure surface and the leading edge of rotating blade. The average particle impingement velocity can reach up to 150-180m/s, and the impingement angle is in the range of 18 degrees-28 degrees. High-temperature erosion test results show that boride coating will soon broken and fall off under the continuing impact of millimeter-sized particles, which confirms that hard coatings are difficult to resist the high-intensity impingement from these large particles. Therefore, separating particles before entering the nozzle chamber with the employment of an inertial separator should be the optimal choice for improving the erosion resistance of turbine. The results of this study enrich the types of blade erosion damage and provide a new idea for reducing erosion damage of control stage blades.
机译:减少叶片的固体颗粒侵蚀是高参数蒸汽轮机发电技术最迫切的问题之一。基于高温加速腐蚀​​试验得到的叶片材料的腐蚀速率模型和颗粒回弹模型,利用三维数值模拟方法,系统地研究了典型超临界汽轮机控制级片状颗粒的腐蚀特性。首先揭示了硬质涂层在喷嘴吸入面上的腐蚀机理,并通过高温腐蚀试验验证了具有大氧化物颗粒的硼化物涂层的耐蚀性。结果表明,在喷嘴吸力表面的后半部分,硼化物涂层受到严重的腐蚀破坏,是由于大颗粒在初始撞击喷嘴压力表面和旋转前缘后在1000μm和2000μm之间重新结合回弹而引起的。刀。平均粒子撞击速度可达150-180m / s,撞击角度在18度至28度的范围内。高温腐蚀试验结果表明,在毫米大小的颗粒的持续冲击下,硼化物涂层将很快破裂并脱落,这证明硬涂层很难抵抗这些大颗粒的高强度冲击。因此,使用惯性分离器在进入喷嘴室之前分离颗粒应该是提高涡轮机抗腐蚀性能的最佳选择。这项研究的结果丰富了叶片腐蚀损伤的类型,并为减少控制级叶片的腐蚀损伤提供了新的思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号