首页> 外文期刊>Proceedings of the institution of mechanical engineers >Use of the floating frame of reference formulation in large deformation analysis: experimental and numerical validation
【24h】

Use of the floating frame of reference formulation in large deformation analysis: experimental and numerical validation

机译:参考配方的浮动框架在大变形分析中的使用:实验和数值验证

获取原文
获取原文并翻译 | 示例
           

摘要

The finite-element floating frame of reference (FFR) formulation is used, for the most part, in the small deformation analysis of flexible bodies that undergo large reference displacements. This formulation allows for filtering out systematically complex shapes associated with high frequencies that have no significant effect on the solution in the case of small deformations. The resulting low-order FFR models have been widely used to obtain efficient and accurate solutions for many engineering and physics applications. In this investigation, the use of the FFR formulation in the large deformation analysis is examined, and it is demonstrated that large deformation FFR models can be accurate in applications, where the deformation can be described using simple shapes as it is the case in robot system manipulators. In these cases, the standard finite-element FFR formulation must be used with non-linear strain-displacement relationships that account for the geometric non-linearities. The results obtained using the large deformation FFR models are compared with the results obtained using the large deformation absolute nodal coordinate formulation (ANCF), which does not allow for the use of linear modes. The ANCF models are developed using two different methods for formulating the elastic forces: the basic continuum mechanics approach (ANCF-BC) and the elastic line method (ANCF-EL). While the explicit Adams method can be used to obtain the numerical solution of the FFR model, two implicit integration methods are implemented in order to be able to obtain an efficient solution of the FFR and ANCF models. These implicit integration methods are the RADAU5 method and the Hilber-Hughes-Taylor (HHT) method. In the case of simple large deformation shapes, the simulation results obtained in this study show a good agreement between the FFR and the ANCF solutions. The results also show that, in the case of thin and stiff beams, the coupled deformation modes that result from the use of the ANCF-BC can be a source of numerical and locking problems, as reported in the literature. These ANCF-BC numerical problems can be circumvented using the implicit HHT integration method. Nonetheless, the HHT integrator does not capture high-frequency FFR axial modes which are necessary in order to obtain accurate solutions for high-speed rotating beams. In addition to the comparison with the ANCF solutions, experimental results of a forward dynamics model are used in this study to validate the large deformation FFR numerical solutions. The experimental set-up used in the validation of the numerical solutions is also described in this investigation.
机译:有限元浮动参考框架(FFR)公式在大多数情况下用于承受较大参考位移的柔性体的小变形分析。该公式允许滤除与高频相关的系统复杂形状,这些形状在较小变形的情况下对求解没有明显影响。由此产生的低阶FFR模型已被广泛用于为许多工程和物理应用获得高效,准确的解决方案。在这项研究中,研究了FFR公式在大变形分析中的使用,并证明了大变形FFR模型在应用中可以是准确的,其中变形可以使用简单的形状来描述,就像机器人系统中的情况一样。机械手。在这些情况下,必须将标准有限元FFR公式与考虑几何非线性的非线性应变-位移关系一起使用。将使用大变形FFR模型获得的结果与使用大变形绝对节点坐标公式(ANCF)获得的结果进行比较,这不允许使用线性模式。 ANCF模型是使用两种不同的弹性力公式开发的:基本连续体力学方法(ANCF-BC)和弹性线方法(ANCF-EL)。虽然可以使用显式的Adams方法获得FFR模型的数值解,但是为了实现FFR和ANCF模型的有效解,实现了两种隐式积分方法。这些隐式积分方法是RADAU5方法和Hilber-Hughes-Taylor(HHT)方法。在简单的大变形形状的情况下,在这项研究中获得的模拟结果表明FFR和ANCF解决方案之间有很好的一致性。结果还表明,在薄而刚性梁的情况下,使用ANCF-BC产生的耦合变形模式可能是数值和锁定问题的根源,如文献报道。可以使用隐式HHT积分方法来规避这些ANCF-BC数值问题。但是,HHT积分器无法捕获为获得高速旋转光束的精确解所必需的高频FFR轴向模式。除了与ANCF解决方案进行比较之外,本研究还使用正向动力学模型的实验结果来验证大变形FFR数值解决方案。在这项研究中还描述了用于数值解验证的实验装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号